
Compiler Error Messages Considered Unhelpful: The Landscape
of Text-Based Programming Error Message Research
Brett A. Becker∗

University College Dublin
Dublin, Ireland

brett.becker@ucd.ie

Paul Denny∗
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Raymond Pettit∗
University of Virginia

Charlottesville, Virginia, USA
raymond.pettit@virginia.edu

Durell Bouchard
Roanoke College

Roanoke, Virgina, USA
bouchard@roanoke.edu

Dennis J. Bouvier
Southern Illinois University Edwardsville

Edwardsville, Illinois, USA
djb@acm.org

Brian Harrington
University of Toronto Scarborough
Scarborough, Ontario, Canada

brian.harrington@utsc.utoronto.ca

Amir Kamil
University of Michigan

Ann Arbor, Michigan, USA
akamil@umich.edu

Amey Karkare
Indian Institute of Technology Kanpur

Kanpur, India
karkare@cse.iitk.ac.in

Chris McDonald
University of Western Australia

Perth, Australia
chris.mcdonald@uwa.edu.au

Peter-Michael Osera
Grinnell College

Grinnell, Iowa, USA
osera@cs.grinnell.edu

Janice L. Pearce
Berea College

Berea, Kentucky, USA
pearcej@berea.edu

James Prather
Abilene Christian University

Abilene, Texas, USA
james.prather@acu.edu

ABSTRACT
Diagnostic messages generated by compilers and interpreters such
as syntax error messages have been researched for over half of a
century. Unfortunately, these messages which include error, warn-
ing, and run-time messages, present substantial difficulty and could
be more effective, particularly for novices. Recent years have seen
an increased number of papers in the area including studies on
the effectiveness of these messages, improving or enhancing them,
and their usefulness as a part of programming process data that
can be used to predict student performance, track student progress,
and tailor learning plans. Despite this increased interest, the long
history of literature is quite scattered and has not been brought
together in any digestible form.

In order to help the computing education community (and re-
lated communities) to further advance work on programming error
messages, we present a comprehensive, historical and state-of-the-
art report on research in the area. In addition, we synthesise and
present the existing evidence for these messages including the dif-
ficulties they present and their effectiveness. We finally present a
set of guidelines, curated from the literature, classified on the type

∗co-leader

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6895-7/19/07. . . $15.00
https://doi.org/10.1145/3344429.3372508

of evidence supporting each one (historical, anecdotal, and empiri-
cal). This work can serve as a starting point for those who wish to
conduct research on compiler error messages, runtime errors, and
warnings. We also make the bibtex file of our 300+ reference corpus
publicly available. Collectively this report and the bibliography will
be useful to those who wish to design better messages or those that
aim to measure their effectiveness, more effectively.

CCS CONCEPTS
•General and reference→ Surveys and overviews; •Human-
centered computing→Human computer interaction (HCI);
• Social and professional topics → Computer science edu-
cation; Computing education; CS1; • Applied computing →
Education; • Software and its engineering→ General program-
ming languages; Syntax; Compilers; Interpreters; Semantics;

KEYWORDS
compiler error messages; considered harmful; CS1; CS-1; design
guidelines; diagnostic error messages; error messages; human com-
puter interaction; HCI; introduction to programming; novice pro-
grammers; programming errors; programming error messages; re-
view; run-time errors; survey; syntax errors; warnings

ACM Reference Format:
Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J.
Bouvier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald,
Peter-Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler
Error Messages Considered Unhelpful: The Landscape of Text-Based Pro-
gramming Error Message Research. In 2019 ITiCSE Working Group Reports
(ITiCSE-WGR ’19), July 15–17, 2019, Aberdeen, Scotland UK. ACM, New York,
NY, USA, 34 pages. https://doi.org/10.1145/3344429.3372508

© Owners/Authors 2019. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 2019 ITiCSE Working Group Reports (ITiCSE-
WGR ’19), https://dl.acm.org/citation.cfm?id=3372508 or https://doi.org/10.1145/3344429.3372508

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://dl.acm.org/citation.cfm?id=3372508
https://doi.org/10.1145/3344429.3372508

1 INTRODUCTION & MOTIVATION
Computer programming is an essential skill that all computing
students must master [141] and is increasingly important in many
diverse disciplines [167] as well as at pre-university levels [166].
Research from Educational Psychology indicates that teaching and
learning are subject-specific [135] and that learning programming
consists of challenges that are different to reading and writing
natural languages [17, 68] or, for example, physics [34]. It is also
frequently stated that programming is difficult to learn [127]. As
early as 1977 it was explicitly stated that programming could be
made easier [189]. The perception that programming is intrinsically
hard however, can vary [125]. Regardless, the general consensus
for the past several decades from academia to the media, from
universities to primary schools, seems to be “Learning to program
is hard” [102, p3].

One of the many challenges novice programmers face from the
start are notoriously cryptic compiler error messages, and there
is published evidence on these difficulties since at least as early
as 1965 [177]. Such messages report details on errors relating to
programming language syntax and act as the primary source of
information to help novices rectify their mistakes. Most program-
ming educators are all too familiar with the reality of messages that
are difficult to understand and which can be a source of confusion
and discouragement for students. Supporting evidence for this can
be found in the literature spanning many decades. Students have
reported that such errors are frustrating, and have described them
as “barriers to progress” [15]. Further, it has been reported that
students have difficulty locating and repairing syntax errors using
only the typically terse error messages provided by the average
compiler [53, 182]. These are traits not exclusive to programming
error messages – general system error messages also cause similar
issues [187]. The effects these messages have on students is mea-
surable. A high number of student errors, and in particular a high
frequency of repeated errors – when a student makes the same
error consecutively – have been shown to be indicators of students
who are struggling with learning to program [16, 98]. This area
of research has seen increased interest in the last 10 years with
authors such as Barik [9], Becker et al. [19], Brown & Altadmri [31],
Denny et al. [50], Karkare (Ahmed et al.) [3], Kohn [106], McCall &
Kölling [140], Pettit et al. [158], and Prather et al. [163], focusing
on compiler error messages (to name a few).

The feedback that these messages provide are extremely impor-
tant. A recent survey of hundreds of computing education prac-
titioners revealed that the question “How and when is it best to
give students feedback on their code to improve learning?” was
rated as one of the most important questions they would like to
see researchers investigate [48]. Compilers and programming envi-
ronments provide feedback immediately, often in the absence of an
instructor or lab assistant, and can seem very authoritative, or “all-
knowing, infallible authorities about what is right and wrong about
code” [113, p109]. Watson, Li & Godwin explained the importance
of these messages as follows [207, p228]:

Feedback is regarded as one of the most important
influences on student learning and motivation. But
standard compiler feedback is designed for experts

- not novice programming students, who can find it
difficult to interpret and understand.

Despite this importance, in the last 50+ years, little positive has
been said about compiler error messages. In this time they have
been described as inadequate and not understandable (Moulton
& Miller, 1967) [146], useless (Wexelblat, 1976) [208], not opti-
mal (Litecky, 1976) [120], inadequate [again, 16 years after [146]]
(Brown, 1983) [36], frustrating (Flowers et al., 2005) [72], cryptic
and confusing (Jadud, 2006) [98], notoriously obscure and terse
(Ben-Ari, 2007) [24], undecipherable (Traver, 2010) [202], intimidat-
ing (Hartz, 2012) [84], still very obviously less helpful than they
could be (McCall & Kölling, 2015) [139], inscrutable (Ko, 2017)1,
frustrating [again, 13 years after [72]] and a barrier to progress
(Becker et al., 2018) [21].

Knuth pointed out ‘mysterious’ error messages as responsible
for breaking down the ability to see through layers of abstraction,
as Ramshaw, a former graduate student of Knuth’s recounted:2

Don [Knuth] claims that one of the skills that you
need to be a computer scientist is the ability to work
with multiple levels of abstraction simultaneously.
When you’re working at one level, you try and ignore
the details of what’s happening at the lower levels.
But when you’re debugging a computer program and
you get some mysterious error message, it could be
a failure in any of the levels below you, so you can’t
afford to be too compartmentalised.

1.1 Motivation
With the users who deal with these messages at the focal point of
this work, our chief motivations originate with how programming
error messages affect students from two points of view:

(1) Internal student factors. For example: Students find pro-
gramming errormessages to be frustrating [21, 51], intimidat-
ing [84], as well as confusing and harmful to confidence [100].
Rightfully so, students do not trust them [97] but importantly
they do read them [12, 163]. Additionally, their behaviour is
altered by them [101] – but most programming instructors
have seen that with their own eyes.

(2) External student factors. For example: Results which in-
dicate that programming error messages can correlate with
traditional measures of success [196, 206], are a measurable
part of programmer behaviour [98], result in wasting educa-
tor time and resources [200], and the student’s experience
with programming error messages is highly influenced by
the programming environment [18, 101] which plays a vital
role when it comes to programming error messages.

We are also motivated by recent findings from Barik et al. [12] who
have provided empirical evidence that:

(1) Programmers do read errormessages (corroborated by [163]);
(2) the difficulty of reading these messages is comparable to the

difficulty of reading source code;
(3) difficulty reading error messages significantly predicts par-

ticipants’ task performance, and;
1https://blogs.uw.edu/ajko/2014/03/25/programming-languages-are-the-least-usable-
but-most-powerful-human-computer-interfaces-ever-invented/
2https://www.salon.com/1999/09/16/knuth/

https://blogs.uw.edu/ajko/2014/03/25/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented/
https://blogs.uw.edu/ajko/2014/03/25/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented/
https://www.salon.com/1999/09/16/knuth/

(4) participants allocate a substantial portion of their total task
to reading error messages (13-25%).

These authors go on to explain that their results offer empirical
justification for the need to improve compiler error messages. In this
paper, we argue that these results also highlight a more fundamental
truth – programming error messages are a fundamental form of
interaction with a system and good error messages are required
to make that interaction efficient. In addition we have little at our
disposal to actually measure how efficient that interaction is.

When considering novices, perhaps the stakes are highest. Twenty
years ago, Kölling stated [107, pp145-146]:

Good error messages make a big difference in the us-
ability of a system for beginners. Often the wording of
a message alone can make all the difference between
a student being unable to solve a problem without
help from someone else and a student being able to
quickly understand and remove a small error.

In 2016 (17 years later) McCall & Kölling noted that Java error mes-
sages in particular, are not only (still) confusing from the novices’
point of view, but probably confusing for all programmers due to
the following observations [138, p2]:

• A single error may, in different context, produce
different diagnostic messages.

• The same diagnostic message may be produced by
entirely different and distinct errors.

Finally, in 2019 the same authors reiterated that the information
provided by (some/many) compiler error messages is inaccurate
and imprecise: “This information, however, does not have a direct
correlation to the types of errors students make, due to the inac-
curacy and imprecision of diagnostic messages” [140, p38:1]. They
also provide a rich discussion on the issues with errormessages. The
quote below is only a sample of a much larger discussion in [140,
p38:20]:

A compiler can produce two different diagnostic mes-
sages for what is logically the same error occurring
in two subtly different syntactical contexts, for exam-
ple; similarly, it might produce the same diagnostic
message for two quite distinct errors that could be
recognised by an experienced programmer as logically
distinct error types. Furthermore, different compilers
– or different versions of the same compiler – may
produce different diagnostics when presented with
the exact same source code input.

If inconsistency within a specific compiler is an issue, it complicates
matters further when the differences between compilers are consid-
ered. Different compilers producing different errors for the same
code has been (sporadically) studied for nearly 40 years [27, 35].

The authors of this report have first-hand experience with stu-
dents strugglingwith programming errormessages, likemany other
programming instructors. One author had a student remark the
following recently: “If I had to pin-point the most difficult aspect of
C so far I’d have to say making sense of error messages”. Another
author had a student comment (referring to Java) [14, p1]: “If a
compiler error was worth one Euro, I would be a millionaire”.

Marceau, Fisler & Krishnamurthi nicely summed up the situa-
tion [133, p3]:

Yet, ask any experienced programmer about the qual-
ity of error messages in their programming environ-
ments, and you will often get an embarrassed laugh.
In every environment, a mature programmer can usu-
ally point to at least a handful of favourite bad error
responses. When they find out that the same envi-
ronment is being used by novices, their laugh often
hardens.

Although we focus on student programmers it is important to
realise that errors also affect professional programmers in non-
trivial ways. Studying 26.6 million builds generating 57.8 million
error messages at Google, Seo et al. found between 28% and 38%
build failure ratios depending on language, that 10% of error types
account for 90% of build failures, and that the resolution time was
highly dependent on the error message, ranging from around a
few minutes up to an hour with a median of about 5 minutes for
C and 12 minutes for Java [183]. Rough calculations reveal that
the median time spent on failed builds is 4.7 hours per month for
C++ and 5.7 hours per month for Java. Traver [202] also pointed
out that experts have interests in error messages, noting that when
changing languages they are in some ways beginners again [181],
and that improved messages benefit professionals [116].

1.1.1 A Motivating Example. As a motivating example, consider
the following Java code which is typical of a first programming
example or assignment in a first-year university introductory pro-
gramming course.

1 public class hello {
2 public static void main(string[] args) {
3 system.out.println("Hello World!");
4 }
5 }

The two error messages resulting from attempting to compile the
above code are shown below.

hello.java:2: error: cannot find symbol
public static void main(string[] args) {

^
symbol: class string
location: class hello

hello.java:3: error: package system does not exist
system.out.println("Hello World!");
^

2 errors
Process Terminated ... there were problems.

Even in this simple example, neither error message accurately re-
flects the true programmer-introduced errors that generate them.
They may accurately reflect what the compiler thinks is wrong, but
this is likely meaningless to a beginner. Simpler descriptions of the

above errors would have a greater chance of being understood by a
beginning programmer. For example:

• The “s” in “string” on line 2 should be capitalised.
• The “s” in “system” on line 3 should be capitalised.

Of course, this is easier said than done. In general the compiler can-
not divine the intention of the programmer. Making error messages
more specific – as illustrated by our suggestions above – runs the
risk of proposing solutions that the user does not intend.

Finally, if cryptic messages are confusing for fluent speakers of
English (the language upon which most programming languages
and their documentation are based), this situation may present
additional barriers to non-fluent speakers of English [17].

1.2 Outline
This paper is laid out as follows. In Section 2 we provide a brief
background to this work, describe our objectives and audience,
and formalise our nomenclature. In Section 3 we provide precise
definitions for the terms used in the paper and review how com-
mon program analysis tools generate error messages. We conduct a
comprehensive review of the literature and report our methods and
findings in Section 4. In the following four sections, we examine
the literature in greater detail around several prominent themes.
Firstly, in Section 5, we report findings from a pedagogical perspec-
tive. In Section 6, we explore how researchers and tool designers
have addressed the technical challenges of generating effective er-
ror messages. We then review attempts to improve, or enhance,
error messages themselves, summarising both historical and recent
efforts in Section 7. Finally, in Section 8, we organise guidelines
curated from the literature – suggested by researchers over nearly
six decades – for designing useful error messages, and present ev-
idence supporting (and not supporting) them. We conclude this
paper with a summary of our main findings in Section 9.

2 BACKGROUND & APPROACH
Diagnostic error messages generated by compilers and interpreters,
including error, warning, and run-time messages, have been re-
searched for over 50 years with one obvious consensus: they present
substantial difficulty and could be more effective [18, 163]. They
are often vague, imprecise, confusing and at times seemingly incor-
rect [36], in particular for novices. Research has also shown that
these messages can be a source of frustration for students [21, 51].
Unfortunately, drawing any more specific conclusions from this
history of research is difficult. In 1983, Brown stated “There should
be a deliberate and sustained effort to focus attention on the quality
of error messages, both in compilers and other systems, so that the
current appalling state-of-the-art can be improved” [36, p249]. In
1984, du Boulay & Matthew asked “Why cannot these messages be
made clearer, less confusing and more accurate?” [57, p109]. We ar-
gue that du Boulay & Matthew’s question is still valid, and Brown’s
call for action has not been met. We also note that educators strive
for their feedback to students to be accurate [126], and we should
expect the same from the tools we have students use.

Although in recent years there has been increasing interest in
programming errors (faults committed by students) and the diag-
nostic messages they generate [22, 127], the literature on these
messages is quite scattered and has not been brought together in an

easily digestible form. This is despite the fact that the presentation
of empirical evidence on the effects of these messages has advanced
recently [192]. Various studies have analysed the types and fre-
quency of diagnostic messages that students generate; others have
explored how ‘standard’ messages can be enhanced to make them
more usable; and others still have sought to determine how the
effectiveness of these messages can best be measured. Yet the diffi-
culties these messages present, and evidence for their effectiveness,
have not been comprehensively analysed.

This is exacerbated by the fact that although some works have
presented evidence on diagnostic message effectiveness [15] (or
lack thereof [50]), this evidence seems to be conflicting [158], but
may not be as conflicting as it appears. Additionally, some message
design guidelines (explicit and implicit) exist but they span several
decades and many of them are also conflicting, leaving the way
forward unclear. We argue that to help the community proceed
with more work on such messages, a clear picture of the state-
of-the-art in compiler/interpreter diagnostic message design and
effectiveness is required. In addition, a synthesis of the evidence
on these messages including the difficulties they present and their
usefulness would be helpful. A literature- and evidence-backed set
of guidelines for the design of diagnostic programming messages
would also be a valuable resource for the community. That is what
this report strives to deliver.

It is worth noting that the lessons learned in this arena may
be generalisable across languages, cohorts, and tools. Motivated
by writing error explanations for novices, Pritchard [164] found
that in large datasets of Java and Python programming error mes-
sages, the frequencies of message (error) types empirically resem-
ble Zipf-Mandlebrot distributions. One possible implication of this
work (beyond an interesting and possibly useful way to compare
languages) is in measuring what languages give more distinctive
programming error messages. Becker found very strong similarities
in the distributions of the ten most frequent Java messages from six
studies spanning several years and Java versions [14] (see Figure 1).

Jadud [98] found a less common but still similar distribution
between six languages/environments: BlueJ (a pedagogic Java envi-
ronment [109]); COBOL [120]; Helium (a pedagogic Haskell Envi-
ronment [87]); LOGO [157]; and SOLO (a LOGO-like language for
manipulating semantic networks [61]).

On the messages themselves, Traver gives a relatively current
and quite comprehensive treatment [202]. Barik’s works also pro-
vide quite current insights coupled with empirical findings and
justifications for programming error messages to be investigated
with more seriousness than in the past [9, 10].

2.1 Audience & Objectives
The intended audience of this paper falls into four broad and often
overlapping categories:

(1) language designers
(2) tool developers
(3) educators
(4) researchers

Although these categories can overlap significantly, in this paper we
provide directed discussions aimed at one or more of these groups.
We note that this categorisation also includes novice programmers

Figure 1: Frequency of the ten most common Java errors
from six Java studies: Becker [14]; Brown et al. [33]; Jack-
son et al. [96]; Tabanao et al. [196]; Dy & Rodrigo [59];
and Jadud [98]. Image adapted with permission ©Brett A.
Becker [14].

indirectly, through these four audiences, as there are designers,
developers, educators and researchers that all interact with novices
often and on different levels. Despite this, we also believe that this
paper will be helpful for those who are interested in how program-
ming error messages affect more experienced students and even
professional programmers. We intend this report to be useful for
the above categories of audience not just in Computing Education,
but in several different sub-disciplines such as Human Computer
Interaction, Programming Languages, and Software Engineering.
We hope that our efforts can contribute to more progress in the
research of diagnostic programming messages on many fronts.

We aim to satisfy two broad objectives with this work. The first
of these is to present a state-of-the-art report encompassing the dif-
ficulties that diagnostic messages present (particularly for novices),
the design of these messages, and evidence of their effectiveness.
This brings together the literature and evidence on diagnostic pro-
gramming messages from the disciplines of Computing Education,
Human Computer Interaction, Programming Languages, and more.
The second objective is to present a unified set of guidelines for
the design (or improvement) of these messages, which we hope
will inform the future work of language designers and tool de-
velopers. Some studies over the last few decades have provided
concrete design guidelines — for instance, see [202]. However, not
all are backed by empirical evidence, and some are conflicting [158],
which highlights the necessity for further research. Based on what
is currently reported in the literature, we present a unified set of
guidelines that can be used as a starting point for designing or
improving diagnostic messages.

2.2 The Nomenclature of Errors and Messages
The nomenclature of programming errors andmessages differs from
community to community and even researcher to researcher. In this
paper we have already used the terms: ‘error message’, ‘diagnostic
error message’, ‘syntax error message’, and ‘compiler error message’.
In part this is deliberate - all of these terms have been used many
times, for many years, by many people, to refer to the same thing.

However we do not choose to continue using the first two as they
are too vague. We choose not to use ‘syntax’ or ‘compiler’, despite
widespread usage, as these may seem to exclude, for instance, run-
time error messages and non-compiled languages.

After much discussion, including with those beyond the authors
of this report, we have decided to use the term ‘programming error
message’ in the remainder of this report. We are aware that ‘error’
could seem to exclude warnings, for instance. Nonetheless we find
that excluding error completely loses meaning. After all, most of the
messages we are discussing are due to errors. In turn these errors
are committed by the programmer. Marrying ‘programming’ with
the ‘error’ and the ‘message’ we feel completes the feedback loop
that occurs when programming: the programmer writes a program
as input and errors cause the machine to return messages back
to the programmer. We view this as an analogue to Jadud’s edit,
compile, run cycle [98], but from a feedback/message point of view.
We note that some authors prefer ‘diagnostic message’ (specifically
over “compiler error” [140]). However after much discussion (again,
including with many outside of the authors of this paper) and
very closely favouring ‘diagnostic’ we concluded that ‘diagnostic
message’ or even ‘diagnostic error message’ is too vague. In the case
of the latter for instance, it is clear that the message is intended to
diagnose an error, but this could for instance be referring to a system
error, an HTTP 404 error, or any other error. When absolutely
necessary we use terms such as: runtime error message, warning
message, etc. when we need to discuss a specific type/category of
message.

However, what constitutes a message? It turns out that this is
also a possibly contentious word. Later in Sections 3.2 and 3.3 we
precisely and technically define the words error and message for
the purposes of this paper. However at this point it is appropriate
to remind the reader that this work focuses on messages – text
returned to the user from the programming environment due to an
error in code or other violation of language specification committed
by the programmer. As programmers often commit errors which
often generate messages, we necessarily discuss errors themselves,
on occasion. However, there is a vast literature on errors which
largely is beyond the scope of this paper. As an entry point into
the literature on errors themselves, as well as many other facets of
novice programmer behaviour, we recommend [127].

3 PRELIMINARY DEFINITIONS
We frame our discussion of programming error messages by first
precisely defining our objects of study. Commonly used terminol-
ogy regarding programming languages is frequently tied to the
particulars of a language and its implementation. Sometimes, this
terminology is even contradictory between languages; for example,
syntax errors in Python are considered static errors (i.e., before inter-
pretation) whereas they are considered dynamic errors in JavaScript
(i.e., during interpretation). Since our work is programming lan-
guage agnostic, we strive to define programming errors and the
surrounding terminology in a similar way. To do this, we first re-
view basic concepts and terminology about compilers, interpreters,
and programming languages. Programming errors are intrinsically
tied to the compilation process, so it is important to first review the
architecture of compilers and interpreters. With these definitions

in hand, we can arrive at a general categorisation of programming
errors that will guide the rest of our discussion.

3.1 The Architecture of a Compiler
Compilers and interpreters are two instances of program analysis
tools. Other sorts of program analysis tools include linters, debug-
gers, code editor assistants, and visualisers. Regardless of their
functionality, all program analysis tools perform two fundamen-
tal operations: translation of a program from one representation
to another and analysis of that program in a particular represen-
tation. Translation allows a tool to improve code in some way,
e.g., through formatting or optimisation, or transforming the code
into a form that is ideal for a particular analysis. These analyses
gather information about the program for use by the developer,
e.g., auto-completion tools, or for internal use, e.g., to ascertain the
correctness of the program.

Due to memory and processing constraints, classical tools were
built as monolithic structures, intertwining these two operations
in ad hoc ways. Modern program analysis tools, in contrast, are
structured as a pipeline of passes. Each pass is responsible for taking
a program representation as input and producing a new representa-
tion as output, performing some amount of analysis in the process.

There are several passes that are common among many program
analysis tools:

• Lexical analysis transforms raw source code (a string of char-
acters) into a sequence of tokens, chunks of meaningful text,
e.g., identifiers and punctuation.

• Parsing transforms a sequence of tokens into an abstract
syntax tree (AST), a tree-like representation of the program
amenable to analysis.

• Static type checking analyses an AST to ensure a program is
consistent with the language’s type system (if that language
is statically-typed).

• Lowering transforms an AST into a lower-level representa-
tion amenable to further analysis or direct execution by an
interpreter or the machine itself.

• Interpretation directly executes a program, usually in its AST
representation or some lower-level form appropriate for effi-
cient execution.

Other passes include pre-processing passes (source-to-source trans-
lations), optimisation passes (source-to-source translations with
the goal of creating a more efficient, yet equivalent program), and
linking passes (lower-level translations that combine collections of
compilation units into a single representation).

Static versus Dynamic Analyses. A common distinction to make
is whether a language analysis occurs during program execution.
We use the term dynamic or runtime to refer to any action that oc-
curs during program execution and the term static or compile-time
to refer to an action that does not occur during program execution.
This is critical with respect to compiler errors since more informa-
tion about the state of a program is available dynamically, generally
allowing for greater precision in error messages. However, it is also
often preferable to report errors as early as possible, making static
detection attractive, and leading to a fundamental trade-off between
precision and locality when designing error-handling systems for
these tools.

Compilation and Interpretation. Compilers and interpreters are
the primary program analysis tools used by developers. At a high
level, compilers translate textual source code to amachine-executable
form, and an interpreter directly executes textual source code. How-
ever, our understanding of program analysis as a pipeline of passes
helps us better understand how the two sorts of tools are closely
related.

Both compilers and interpreters perform a series of successive
translations and analyses of source code. Virtually all tools use a
lexing and parsing pass to transform the initial source into an ab-
stract representation, usually an abstract syntax tree (AST). These
tools will also perform different sorts of static analysis on the AST,
notably type checking for statically-typed languages. From here,
these tools will continue translating the program to different rep-
resentations and perform additional analyses until the program
reaches a final form, e.g., LLVM IR, Java bytecodes, assembly, or
even the original AST if no additional translation was performed.
This is the point at which compilation and interpretation differ: a
compiler produces the final form of the program as output, and an
interpreter executes the final form of the program.

This fluidity is best demonstrated when traditional ‘compilation’
and ‘interpretation’ tasks happen dynamically and statically, re-
spectively. The first case occurs with Just-in-time compilers (JITs)
commonly found in languages such as Java and C#. In the case of
Java, the Java compiler (javac) first translates a program into Java
bytecodes (.class files), an intermediate format amenable to inter-
pretation by the Java Virtual Machine (JVM). The JVM interprets
these bytecodes directly, but during interpretation, it also translates
bytecodes that are frequently run directly to machine code, e.g., x86
assembly, as a performance optimisation. The second case occurs
with macro systems such as those found in the Racket program-
ming language3. In Racket, macros are simply Racket programs
that produce new Racket source code as output and are interpreted
at compile-time in a pre-processing pass.

3.2 Programming Errors
With a better understanding of how compilers and interpreters are
structured, we can precisely define programming errors. There are
two broad ways in which a program may be incorrect, implying
that it contains a programming error :

(1) The program is not well-formed according to the specifica-
tion of the language.

(2) The program is well-formed but does not behave according
to its own specification of correctness.

We say an error is caught (and thus an appropriate error message
can be produced) whenever a system, whether it is an analysis
tool like a compiler or the program itself, detects and intentionally
responds to an erroneous program state with a message. Errors
can be caught either statically or dynamically, depending on how a
particular language is implemented. Note that this stands in contrast
to user errors that arise due to the user breaking their contract with
the program, e.g., by providing erroneous input, rather than the
programmer doing something wrong. Such errors are out of the
scope of this discussion.

3https://racket-lang.org/

https://racket-lang.org/

When an error is not caught, we say that the error is silent,
leading to undefined behaviour at run time. Undefined behaviour
can include data corruption, arbitrary program behaviour, simply
returning incorrect results, or crashing without a message reporting
the error at all.

Language Specification Errors. Programming errors that are de-
tected by a compiler are categorised by the phase of the compilation
process that detects the errors.4 A programming language defines
the requirements of a well-formed program through its language
specification: what is syntactically and semantically acceptable. Syn-
tax concerns the grammatical structure of a program – are the
different components of a program arranged correctly according
to the language’s grammar? Syntax errors arise during the lexing
and parsing passes of analysis when a program is checked to en-
sure that it is syntactically correct. In contrast, semantics concerns
the meaning of a program—can it be run to produce a meaningful
result? The different semantic errors are further categorised based
on the pass in which they are caught. Most notably, type errors are
caught during type checking, whether it occurs statically during
a type-checking pass or dynamically during program execution.
Other sorts of semantic errors are possible depending on the kinds
of analyses a particular tool performs and the behaviour of the
program, e.g., scoping errors when variable use is not in scope of
its definition, memory errors when memory safety is violated, and
concurrency errors when multi-threaded code is not synchronised
appropriately.

Program Specification Errors. On top of the language specifica-
tion, each program has its own program-specific specification. This
is not necessarily a formal specification; it is merely what the de-
veloper intends their program to do. A program analysis tool does
not know this specification a priori, and so, by definition, it cannot
detect when a program violates its own specification. If the devel-
oper cares to validate this specification, a process called program
verification, they must do one of two things:

(1) Externally validate the program against this specification in
some way, e.g., through testing or formal proof.

(2) If the language allows it, make parts or the entirety of the
specification known to the program analysis tool, e.g., through
types or assertion statements, so that the tool can validate
the specification internally.

By taking the latter approach, the programmer turns would-be
program specification errors into language-specification errors by
tying the two together.

Program verification is a widely active area of research within
computer science and encompasses a broad range of tools, both
internal and external to the compiler. We limit the scope of our
discussion to verification tools used in mainstream compilers and
interpreters, primarily type systems. However, we hope the guid-
ance in this report can help inform programming error message
design for all of these verification tools.

4This is really a language implementer’s perspective on programming error categori-
sation. It is important to realise that other sorts of categorisations are possible, e.g.,
based on the kinds of conceptual misunderstandings that lead to an error [139], which
can cause confusion when cross-disciplinary peers discuss this subject matter.

3.3 Programming Error Messages
In this work, we focus on text-based programming error messages
typical of those returned to the user when compiling at a command-
line. Many IDEs also return these messages to the user through
an interface. Sometimes these environments alter these text-based
messages. For instance, BlueJ (up to version 3.x) returned only the
first message to the user, even if compiling the same program at the
command-line (using the same javac version) would return multiple
messages as a result of a single compile [21]. Nonetheless, the IDE
is still presenting text-based messages to the user. However there
are other ways of identifying errors which we do not consider to
be messages. Examples include red-squiggle underlining used by
many environments such as Eclipse and BlueJ 4. We also exclude
icon-based notifications such as those in NetBeans. Often however,
clicking on or hovering above underlined code or these icons does
reveal text-based messages (normally in a pop-up).

4 CORPORA
Our examination of the existing programming error message lit-
erature utilised two separate sources. One source was the result
of a quasi-systematic search, using a validated search string, over
several relevant electronic databases. This search was conducted
on 15th June, 2019. The other source was a large body of literature
collected in an ad hoc fashion requiring, at times, much manual
effort. Most of this literature was collected over several years by the
first author of this report, however it remains a work in progress
and is constantly being updated as new work is published (and old
work is unearthed). The numbers we present in this section reflect
the state of this manually curated collection as of 21st August, 2019.

One of the contributions of this research is a comprehensive
corpus of the literature on programming error messages which
we formed by combining these two sources. Currently, our corpus
consists of 307 articles – a bibtex formatted listing of this literature
is available online.5 In the next two sections we describe each of
our two sources – the manually curated corpus and the result of
the quasi-systematic search – and present the methods used to
generate, analyse and merge them.

4.1 Original Corpus
The process of collecting the programming error message literature,
as used in this research, began in 2012 by the first author of the paper.
Like many other teachers, this author witnessed students struggling
with error messages and decided to write a Java editor (Decaf) that
intercepted and enhanced the standard javac error messages [15,
18]. At this point, the author started collecting references on the
literature surrounding error messages. This process picked up pace
when studying the effects of Decaf became the topic of a thesis [14].
Later, two PhD students of the first author, both doing work in
similar areas, helped contribute to the corpus. Many of the items in
the corpus are not available online (but may be available from the
authors5) and several were difficult to find, including:

(1) several theses that are not available online, some obtained
from the authors or libraries (some on microfilm)

5https://iticse19-wg10.github.io/

https://iticse19-wg10.github.io/

(2) sources that are out-of-print and not available online ob-
tained through inter-library loan

(3) personal correspondence with authors
(4) unpublished works
(5) magazine-style publications

Although referred to as the ‘original’ corpus, this collection of arti-
cles is a work in progress and is updated frequently as new relevant
literature is published. As of 21st August, 2019, this corpus consisted
of 192 articles. One unique aspect of the corpus is the number of
theses that focus on (or are very related to) the enhancement of
programming error messages, including [9, 14, 41, 80, 81, 84, 89, 98,
99, 105, 107, 119, 138, 143, 200, 218].

4.2 Quasi-systematic Search
The corpus of literature described in Section 4.1 provided a solid
starting point for this research. We were, however, conscious that
the methods used to collect this literature were not systematic
or repeatable. As a result, an implicit bias reflecting the specific
interests of the author may have impacted the coverage of the
corpus, and there may be literature relevant to programming error
messages absent from the corpus.

To address this, we conducted a quasi-systematic review of the
literature on programming error messages, informed by the guide-
lines proposed for such reviews by Kitchenham & Charters [103].
These guidelines were also cited by recent large-scale reviews of
the literature on introductory programming [127, 144].

One of the commonly stated reasons for conducting systematic
reviews is to provide a complete background on which to position
new research activities [103]. This aligns with our goals, as we hope
our paper will assist the community in proceeding with new work
on programming error messages.

4.2.1 Research Questions. We were aware, from reading through
the articles in our original corpus, that programming error messages
are reported in the literature in a wide variety of ways. Examples
include descriptions of the difficulties that students encounter with
error messages, suggestions for improving the wording of error
messages and empirical studies measuring their impact, and reports
of the relationship between errors and error messages encountered
by students with their performance. Our goal with the search was
to catalogue this wide-ranging literature on programming error
messages. As such, our overall research question was broad:

• In what ways have programming error messages been re-
ported in the literature?

We were particularly interested in how error messages can be
improved, leading to specific research questions focusing on techni-
cal challenges, published guidelines and empirical studies on error
message enhancement:

• What are the technical challenges around providing good
error messages?

• What guidelines have been reported for constructing effec-
tively worded error messages?

• What evidence exists that the wording of error messages has
an impact on student programming behaviour and learning?

4.2.2 Search String and Validation. Our search process began with
manual inspection of the proceedings of two recent conferences.

The goal of this manual inspection was to assist with subsequent
validation of the search string used for the quasi-systematic search.
Once the manual search identified all relevant papers in a given
proceedings, the search string could be applied and limited to the
corresponding conference to reveal false positives (papers returned
by the search string but deemed not relevant) and false negatives
(papers identified as being relevant but not returned by the search
string).

For this manual stage, we selected the SIGCSE 2018 and 2019
conference proceedings. These were selected as we were aware
they included several papers related to our topic. In the first step of
the process, we read the titles and abstracts of all 330 papers of four
or more pages in both proceedings. This resulted in 52 potentially
relevant papers for which we examined the full paper, in total
identifying 5 papers from these two conferences that focused on
programming error messages.

We experimented with numerous search strings across a range
of electronic databases. Our experience working with search strings
and the different indexes mirrors that of Brereton et al., who report
a number of challenges given the different models around which
the databases are organised [30]. Luxton-Reilly & Simon et al. also
specifically noted the trade-off we experienced between the use of
more general search terms and generating a manageable number
of results [127]. We discovered one more issue that requires care in
reporting the number of matching articles – for some indexes, the
number of results shown on the webpage differs from the number
of articles that are actually downloaded through the database’s
exporting feature (some of this discrepancy appears due to duplicate
articles, but with unique DOIs, appearing in the exported list). We
therefore report both numbers below.

We use the following search string:

“error message” AND (“compiler” OR “diagnostic” OR
“interpreter” OR “programmer” OR “programming”
OR “syntax” OR “semantic”)

We recorded results from four indexes: the ACM Digital Library,
Scopus, Science Direct and IEEE Xplore. To validate the search
string, we applied it to the ACM Digital library and limited the
search to the SIGCSE 2018 and 2019 proceedings. This returned
exactly the 5 papers we had previously identified manually (in
addition to one abstract-only article which we exclude from con-
sideration due to its length).

We conducted the full search on 15th June, 2019, using meta-
data (title, abstract and keyword) searches on the following four
databases with the following results:

• ACM DL Full Text Collection: 154 reported, 189 exported
• Scopus: 377 reported and exported
• Science Direct: 72 reported and exported
• IEEE Xplore: 18 reported, 13 exported

4.2.3 Selection and Filtering. A total of 651 articles were returned
from the combined searches. After removing duplicates, and ex-
cluding articles of fewer than four pages, a total of 448 articles
remained for manual inspection. These were assessed for relevance,
and excluded if they were written in a language other than English,
less than four pages in length, not clearly about programming error
messages or not relevant for answering our research questions. Of

the 448 articles examined, 285 were excluded, leaving a total of 163
articles for classification.

4.3 Classification
As previously described, the working group identified literature on
programming error messages though two methods:

(1) the original corpus of 192 articles identified manually over
years of working on many distinct yet related efforts, and;

(2) the 163 articles identified through the quasi-systematic search
described in Section 4.2.

A total of 48 articles appeared in both the original corpus and the
quasi-systematic search results. In other words, approximately 70%
of the quasi-systematic search results represented new articles not
uncovered by our manual search efforts. Initially we were surprised
at the relatively small overlap between our two sources, however we
believe this reflects the very diverse nature of the existing literature
on programming error messages.

To effectively utilise this corpus, a tagging system was proposed.
All 12 authors collaborated on the development of a set of 13 tags
and accompanying descriptor statements as shown in Table 1. These
tags were developed and refined through several weeks of discus-
sion and testing. Once agreed, the papers were tagged by the au-
thors in an on-going, iterative, constantly evolving process. This
began with each author tagging a unique subset of the papers, after
which any author, at any time, could tag, re-tag or un-tag any paper.
This was achieved by entering all references into the Mendeley
reference management software and tagging according to the tag
descriptors in Table 1. In Table 1, rows are ordered from most to
least frequently used tags overall. Each paper may have had more
than one tag assigned (theoretically up to 13), so the column totals
exceed the number of papers. The average number of tags per paper
was 2.1 (min = 1, max = 8, standard deviation = 1.4).

This corpus of unique articles on programming error messages
consists of 307 papers. The bibtex entries for these papers are avail-
able online.6 Figure 2 illustrates the distribution of articles across
publication years, broken down by source. In recent years, there has
been a sharp increase in the number of published articles relating
to programming error messages, perhaps reflecting the growing
number of tools and languages in popular use. Well over half of
the papers in the corpus were published in 2011 or later. There
doesn’t appear to be any obvious bias in the years over which our
quasi-systematic search uncovered literature compared with our
manually curated original corpus.

Several major themes emerged from the classification of papers
in the corpus. The ‘enhancement’ tag was the most commonly used,
with 107 papers identified as proposing or studying modifications
or enhancements to programming error messages for an existing
system or language. Many of these articles focused on the technical
challenges of generating useful error messages, in some cases de-
scribing very low-level details, and were also tagged as ‘technical’.
The distinction between ‘guidelines’ and ‘pre-guidelines’ was some-
times subtle, with the former tag reserved for articles that provided
concrete lists of guidelines for designers of error messages. In the
following subsections we expand on each of these four main themes.
In Sections 5, 6, 7, and 8 we discuss these in detail.
6https://iticse19-wg10.github.io/

4.3.1 Pedagogy. How programming error messages affect students,
their learning, and the teaching of programming are central to
our study of these messages and for that reason we will address
this tag first. Perhaps somewhat unsurprisingly (to the authors at
least) the pedagogy tag was mid-table in terms of representation.
In our combined corpus, a total of 43 papers (14% of the entire
combined corpus) were tagged as ‘pedagogy’. Of these papers, 37
were collected manually as part of our ‘original’ corpus while our
quasi-systematic search uncovered 19 (13 of these appeared in both
sources). In Section 5 we discuss the main findings on this front.

4.3.2 Technical. Somewhat unsurprisingly, the ‘technical’ tag was
second most frequent. The key technical challenges to improving
the handling of programming errors are error detection, localisa-
tion and providing feedback. Any useful system must detect any
deviation from the specification of a programming language (er-
ror detection). It must accurately report the locations where such
errors have occurred (localisation) and finally, it must provide a
message to help users understand and fix the errors. Understanding
and overcoming these technical challenges is often the first step
in improving the quality of generated error messages, and we find
many of the papers in our corpus are tagged as “technical”. An
examination of the author-defined keywords for these articles, ex-
tracted from our corpus, reveals most describe techniques based on
type systems and type inference. Other keywords include compilers
and parsers, static analysis, dynamic analysis and run-time error
messages.

In our combined corpus, a total of 91 papers (30% of the entire
combined corpus) were tagged as ‘technical’. Of these papers, 35
were collected manually as part of our ‘original’ corpus while our
quasi-systematic search uncovered 72 (16 of these appeared in both
sources). Section 6 elaborates on the technical issues related to
programming error messages in detail, a topic not often discussed
in computing education venues.

4.3.3 Enhancement. Given the struggles that programmers, espe-
cially novice programmers, have with error messages, improving
or enhancing the messages is of great interest to both the pro-
gramming languages and education communities. In our combined
corpus, a total of 107 papers (35% of the entire combined corpus)
relate to the enhancement or improvement of programming error
messages and were tagged as ‘enhancement’. Of these papers, 72
were collected manually as part of our ‘original’ corpus while our
quasi-systematic search uncovered 64 (29 of these appeared in both
sources). In determining exactly what constitutes an ‘enhancement’,
for the purposes of our working group, we considered papers that
replaced existing error messages generated from the system, altered
these messages in any way, or added tips or extra information to
the messages. We did not include, for instance, efforts to identify
syntax mistakes dynamically within an IDE by indicators such as
red ‘squiggly’ lines. Section 7 discusses attempts at, and results
from, error message enhancement in more detail.

4.3.4 Guidelines. Papers that presented guidelines for designing
useful messages were quite common in our corpus. We classified
such papers as either ‘guidelines’ or ‘pre-guidelines’ with the former
assigned to 35 papers that offered explicit rules or clear concrete
guidelines and the latter assigned to 50 papers that offered only

https://iticse19-wg10.github.io/

Table 1: Frequency of tags assigned to papers from the original corpus, the quasi-systematic search results, and papers that
appeared in both (overlap). Note that multiple tags could be assigned to each paper.

Tag Descriptor Original and Original Quasi-systematic Total
papers that . . . quasi-systematic only only

enhancement . . . propose modifying or enhancing existing error mes-
sages 29 43 35 107

technical
. . . describe technical issues or challenges with provid-
ing better error messages 16 19 56 91

empirical . . . present empirical results 28 44 17 89

difficulties . . . describe the difficulties that programmers have with
error messages 24 44 10 78

justification . . . provide a strong justification for studying program-
ming error messages 14 38 5 57

pre-guidelines . . . offer suggestions for forming guidelines, but which
do not provide concrete guidelines 16 25 9 50

pedagogy . . . discuss the relationship between messages and ped-
agogy 13 24 6 43

guidelines . . . include explicit guidelines, rules, or concrete sugges-
tions for designing error messages 11 16 8 35

errors-only . . . discuss errors that specifically do not mention diag-
nostic messages 1 16 8 25

anecdotal . . . provide anecdotal results relating to programming
error messages 5 17 1 23

tool . . . describe a tool that uses error messages, but doesn’t
create or enhance them

6 4 10 20

performance . . . establish a link between errors/messages and pro-
grammer performance 5 6 4 15

runtime errors . . . discuss runtime error messages 2 2 4 8

general suggestions. Of the ‘guidelines’ papers, 27 were collected
manually as part of our ‘original’ corpus while our quasi-systematic
search uncovered 19 (11 of these appeared in both sources). For
papers tagged ‘pre-guidelines’, 41 were collected manually, and 25
resulted from our quasi-systematic search (with an overlap of 16
papers).

The literature reports a wide range of guidelines and suggestions
for generating useful error messages. These are scattered across
venue, time, and communities. We found four notable sources that
contained a wealth of guidelines, dating from 1976 to 2018: Horning
(1976) [90], Shneiderman (1982) [187], Traver (2010) [202], and Barik
(2018) [9]. We present these guidelines side-by-side, along with
guidelines from other authors in Section 8.

4.3.5 Summary. As we combined the ‘pre-guidelines’ and ‘guide-
lines’ tags for the purpose of discussion in this paper, the four
subsections above represent five of the top eight tags. We do not
directly discuss ‘empirical’, ‘difficulties’, or ‘justification’ as most
of these papers support the tags we do discuss. To a lesser extent
the same is true for ‘anecdotal’ which was the 10th most frequent
tag. Additionally, we do not directly discuss the five least frequent

tags. Excluding ‘anecdotal’, the most frequent of the bottom four
tags is ‘errors-only’, which we don’t directly discuss as described
in Section 2.2. The remaining three tags are (‘tool’, ‘performance’,
and ‘runtime errors’). A manual inspection revealed that only three
papers with any of these three tags did not have at least one other
tag from the remaining 10 tags. Further inspection reveals that two
of these three papers are cited in this paper. By inspecting the final
remaining paper, we can reasonably determine that although the
current paper does not cite all 307 papers in our corpus, each paper
was considered for discussion, not only tagging.

5 PEDAGOGY & EDUCATIONAL CONTEXT
The detrimental effects of cryptic error messages on novice pro-
grammers have appeared throughout the literature for decades [18,
77, 98, 110, 111, 113, 138, 208]. Educators are affected indirectly as
they must devote time to helping students correct programming
errors when the messages cannot be understood [14, 41, 72, 193].
Often this involves explaining the same error message to multiple
students repeatedly.

Figure 2: Publication years for articles appearing in our final corpus, broken down by source. The darkest ‘Original and quasi-
systematic’ represents articles that appeared in both the original corpus and our search.

Educators designing programming languages with novice pro-
grammers and other learners in mind have all had to grapple with
the presentation of errors, so it is not surprising that the topic of
how error messages affect the learning of programming has also
been discussed by the educational community since at least 1965
– the date of the earliest publication we found, which specifically
discussed FORTRAN diagnostic messages and students [177].

Although not designed as a teaching language, FORTRAN was
used for teaching, especially in the early years of computing edu-
cation. FORTRAN’s programming error messages were deemed so
difficult for learners that at least four implementations of FORTRAN
were devised that each improved on standard FORTRAN messages,
all developed with students in mind. This is fairly remarkable given
the much lower number of publications from this era, particularly
in computing education. DITRAN (DIagnostic FORTRAN) [146],
WATFOR (WATerloo FORTRAN) and WATFIV (WATFOR’s succes-
sor) [43], and PUFFT (Purdue University Fast FORTRAN Transla-
tor) [177, p661] are discussed in more detail in Section 7.

Logo, BASIC, and Pascal were all significant and highly utilised
languages in the earliest era of programming languages designed
specifically for learners. Logo was designed in 1967 as an educa-
tional programming language with design principles grounded in
Piaget’s research into how children develop thinking skills. Notably,
it was designed with the inherent goal of having informative error
messages. Harvey describes this intention as, “a language for learn-
ers has to be designed to deal with problems that are less important
in a language meant for experienced programmers. For example,

when you make a mistake, you should get a detailed, helpful er-
ror message” [85, p33]. Attempting to address some similar issues,
one of the original requirements of the BASIC language, which
according to Kurtz, was developed for liberal-arts students, was
that “the system would be pleasant and friendly” [111, p106]. In
reflecting back on the development of BASIC, Kurtz said, “BASIC
also shows that simple line-oriented languages allow compact and
fast compilers and interpreters, and that error messages can be
made understandable” [111, p117]. Following BASIC, Pascal was
the next dominant programming language designed for novices
learning to program. Yet, when Brown studied error messages in
Pascal, the messages were found to be inadequate [35, 36]. In fact,
Chamillard & Hobart listed their concerns over syntax errors as a
component of their motivation for their transition from Pascal to
Ada97 in teaching programming at the US Air Force Academy [39].
du Boulay also cited Pascal’s lack of meaningful error reporting as
a drawback for using it as a teaching language [57]. In one of the
early influential works on “enhancing” error messages (discussed
in detail in Section 7) Schorsch introduced CAP (Code Analyzer for
Pascal) [182]. CAP provided automatic, user-friendly feedback on
syntax, logic and style errors in Pascal programs, and also provided
enhanced error messages as the stock Pascal messages were often
deemed insufficient.

In the intervening decades educators have continued to struggle
with the choice of teaching novices in a language designed for
beginners, or teaching an industry-strength language designed for
professionals [22, 191]. Additional new languages such as Smalltalk

and Haskell have been developed with a focus on teaching, while
other teaching languages have been derived from industry-strength
languages from Assembly and C to Lisp and Scala. Over this time,
improvements have also been made in both integrated development
environments (IDEs) and in the development of completely new
languages for novices.

COBOL is an early example of a language that was not designed
for education, but COBOL statements have a prose-like syntax in
order to be somewhat self-documenting. Litecky & Davis investi-
gated error messages in the COBOL language, determining that
their feedback was not optimal for programmers, and particularly
challenging for novice programmers [120]. They found, like sub-
sequent studies [14, 18, 164], that the distribution of error types
encountered by students was skewed and therefore proposed that
compiler writers should focus their optimisation efforts on the most
common error types. The title of Kummerfield & Kay’s paper inves-
tigating error messages in C, “The Neglected Battlefields of Syntax
Errors”, gave insight into the growing importance and concern over
the area [110] as did Denny, Luxton-Reilly & Tempero’s “All Syn-
tax Errors are Not Equal” [51]. Though not designed for teaching,
C++ became a dominant teaching language and Bergin, Agarwal, &
Agarwal pointed out numerous issues with the C++ language in its
use as a teaching language, many of them to do with the complexity
of the compiler error messages [25].

Error messages present an interesting and somewhat unusual
pedagogical situation. They have qualities that would seem to be
positive for learners, as the feedback supplied by the machine is
relatively immediate, consistent, detailed, and informative [175].
However messages can be of questionable value to students when
they are phrased using highly technical jargon which may be of
relevance to expert users, but can be confusing to novices [153, 171]
Today, many IDEs offer features that (may) facilitate learning re-
gardless of their initial purpose, such as providing visual clues such
as highlighting and/or underlining to identify certain syntax errors
prior to compilation. The “cosmetic” [56] and more functional [101]
presentation aspects of programming error messages are the subject
of current research but is an under-explored area.

When the Blue and BlueJ IDEs were developed specifically for
learners, three main principles were at the core of the develop-
ment: visualisation, interaction, and simplicity [108]. Block-based
languages make certain structural errors in programs simply im-
possible due to the language specification or environment itself
while other graphical languages such as LabVIEW make certain er-
rors such as poorly constructed conditional tests impossible. Today,
some IDEs offer annotated hints or even corrections generated by
either an algorithm and/or by crowd-sourcing (see Section 7), but
many IDEs still do not offer such feedback.

The level of exactness demanded by a compiler is arguably
unique to the world of computing education. Gries illustrated this
succinctly as early as 1974, [77, p83] saying, “Programming requires
exactness and precision unknown in many other fields. Even in a
mathematics paper, syntax errors and many logical errors can be
understood as such and mentally corrected by the reader. But a
program must be exact in every detail”. This requirement for exact
precision has been shown to be a common source of frustration
for novices [176, p157]. In 1998, Lewis & Mulley wrote, “It is our
belief that production compilers do not always address the needs

of the student engaged in either learning a language or learning
to program” [117]. Jadud completed a detailed study of student
mistakes in Java and how students worked with the compiler to
solve them. In doing so, he developed a metric called the error quo-
tient to determine how well or poorly a student fared with syntax
errors while learning to program [98], and this metric has been
further studied and leveraged by others [16, 20, 92]. Other metrics
based on programming errors (often utilising messages) followed
such as Watwin [206], NPSM [38], and RED [16]. Linkages have
also been identified between error messages and performance in
programming [196].

The monitoring of novice programmer behaviour and mistakes
while programming has a long history. Dy & Rodrigo analysed com-
pilation logs to determine the errors most frequently encountered
by novice programmers, and then modified their system to deliver
what they believed to be more informative error messages [59].
Ahmadzadeh et al. studied novice error frequencies and debugging
behaviours [2], Ettles et al. [66] & Rigby et al. [173] both classified
various kinds of logic errors made by novice programmers with the
goal of informing teaching practice, and research by McCall sug-
gested that error messages have an imperfect mapping to student
misconceptions [138]. Jackson et al. identified the most frequent
errors among their novice programming students and confirmed
a discrepancy between faculty identified errors and those errors
novice programmers were encountering [96]. Such empirical re-
search is necessary, as educators often have inaccurate intuitions
regarding the kinds of errors that students are likely to make when
learning to program. For example, Brown & Altadmri compared
a study of more than 900,000 student users with the results of a
survey of educators to investigate the understanding of which mis-
takes students make most frequently while learning to program in
Java. They found that educators’ estimates neither agreed with one
another nor with the student-generated data [31].

While some authors had hypothesised that novice programmers
do not read error messages, Barik et al. studied this directly [12].
They used eye-tracking software with undergraduate and graduate
students as they attempted to resolve common errors in a Java code
base, finding not only that participants do read error messages, but
they found the difficulty of reading thesemessages to be comparable
to the difficulty of reading source code, and impacted performance.
They summarise with “The results of our study offer empirical
justification for the need to improve compiler error messages for
developers” [12, p575].

Educational programming systems have been increasing in num-
ber in more recent years. In 2015, Kölling wrote, “More systems
of this kind have been published in the last few years than ever
before, and interest in this area is growing” [108, p5]. Kölling at-
tributes this to the rise of teaching programming in ever-younger
age groups. In discussing the motivation for the development of
Blue and BlueJ, Kölling says, “As Pascal before us, we had goals
motivated by pedagogy: we wanted a clear and consistent represen-
tation of programming concepts, clear and readable syntax, good
error messages, little redundancy, a small language core, and good
support for program structure” [108, p11].

Measuring and improving the effectiveness of error messages
for novices is of great interest to educators and has been the focus
of much prior work. The SIGCSE 2011 best paper award went to

Marceau, Fisler, & Krishnamurthi for their paper entitled “Mea-
suring the Effectiveness of Error Messages Designed for Novice
Programmers” [132]. They defined a rubric that researchers can
use to measure whether student code edits in response to displayed
error messages reflect understanding of those messages. Applying
the rubric to data from one course revealed that for many types of
errors students responded poorly to the shown message. In 2014
Denny et al. found that enhancing programming error messages
may not be effective [50] but a year later Becker found evidence that
there can be positive effects [14]. Much work has taken place since
then with no clear consensus. In Section 7 we comprehensively
review work in this area, both historic and current.

In their important work, “Unlocking the Clubhouse”, Margolis
& Fisher found that more women than men transferred out of un-
dergraduate computer science degrees before the third year [70].
Although student statements suggested this attrition was due to a
loss of interest in the subject, the authors observed a more complex
process stemming from a drop in confidence, stating “women and
other students who do not fit the prevailing norm are dispropor-
tionately affected by problems like poor teaching, hostile peers,
or unapproachable faculty" [70, p140]. Given this, it might seem
plausible that interaction with unfriendly tools, which issue cryptic
and unhelpful messages, might contribute to issues around student
confidence.

Nonetheless, very little seems to have been published that more
directly examines the particular impact of errormessages onwomen
and other underrepresented groups. Denny et al. found no gendered
differences when they investigated level of engagement of students
in their use of a tool that provides support for testing as well as drill
and practice [52]. A multi-institutional, multinational 2016 study
by Bouvier et al. found no significant difference in performance
on different novice tasks – including between genders – on the
number of compiling and non-compiling submissions [28]. Further
exploration of the impact of programming error messages on stu-
dent confidence, broken down by self-identities, could prove to be
an important area for future work.

The issues novices face when dealing with compiler error mes-
sages was articulated well in 2004 when Ko [104, p206] wrote:

Invisible rules are difficult to show. To overcome coor-
dination barriers, learners must know a programming
system’s invisible rules. Today’s systems lack explicit
support for revealing such rules, merely implying
them in error messages. Textual programming inter-
faces are limited. To avoid use barriers, the feedback
and interactive constraints of every programming in-
terface must be carefully designed to match its seman-
tics. The textual, syntactic representations of today’s
systems make this goal difficult to achieve.

Unfortunately, the situation has not sufficiently changed to serve
as a remedy in the intervening years.

In concluding this section we feel it appropriate to remind the
reader that programming error messages have real effects on real
people. The authors have seen anecdotal evidence at their home
institutions, as well as documented evidence in the literature [129],
that programming error messages are a contributing factor to real
students leaving computingmajors. It is also plausible thatmessages

which are difficult to interpret for fluent English speakers may
present even greater barriers for those who are non-fluent. Indeed,
recent research that mined the BlueJ / Blackbox database revealed
significant, albeit small, differences in error distributions between
native language groups [170].

6 TECHNICAL
In order to generate effective error messages, a compiler must do
two broad things:

(1) Detect that an error has occurred, and;
(2) Gather data about the state of compilation in order to craft

an appropriate error message.
In some cases, e.g., a type mismatch such as adding an integer to a
list in Python as in: 1 + [1, 2, 3], this is a simple process where
detecting the error is straightforward (the addition is erroneous)
and the data necessary to generate a helpful message is readily
available (1 is an integer and [1, 2, 3] is a list). However, in other
cases detecting an erroneous condition is difficult. It is true however
that in some cases detecting an erroneous condition is easy, but
obtaining the data to generate an effective message is difficult.

In analysing the literature, we have identified several general
problems that impede the generation of effective error messages:

(1) The completeness problem: detecting all erroneous program
behaviour in a (sufficiently powerful) programming language
is undecidable.

(2) The locality problem: errors are frequently detected far away
from their generation sites.

(3) The mapping problem: errors are detected in representations
that do not cleanly map back to the original code.

(4) The engineering problem: rich error handling leads to less
maintainable and less performant code.

(5) The liveness problem: in certain situations, compilation tools
are given partially-completed programs as input which they
are not traditionally designed to handle.

To understand these technical challenges, we first describe these
problems in detail and then we briefly explore how researchers and
compiler implementers have addressed these challenges.

6.1 Challenges
6.1.1 Completeness of Analyses. Generating effective diagnostics
poses significant technical challenges. Rice’s theorem states that
reasoning about any nontrivial property of a program’s behaviour
is undecidable [172], so compilers tend to focus on restricted classes
of errors such as improper syntax and violation of typing rules. In
general, a program analysis may have one of the following proper-
ties but not both:

• The analysis may be sound, meaning that if the analysis; or
claims a program is free of errors, then it really is.

• The analysis may be complete, meaning that if the analysis
claims a program is erroneous, then it really is.

Type systems in a programming language demonstrate the trade-
off between soundness and completeness. The primary goal of a
type system is to detect potential programming errors before run-
ning the code itself. This can be done by analysing the code at
compile-time (static type checking), and if the compiler determines

the program is free of type errors, then it will not encounter one
when run; thus, the analysis is sound. On the other hand, the type
of a value may be checked at runtime prior to performing an oper-
ation on it that requires the value to be of a specific type (dynamic
type checking). This will only detect errors that occur in a specific
program execution, so an error is only reported if it is actually
present; thus, the analysis is complete. Static type checking reports
errors earlier, at the cost of possibly disallowing meaningful code,
while dynamic type checking detects only those errors that occur
when the program is executed, missing errors that may be exposed
by different inputs or execution paths. In practice, many languages
employ a combination of static and dynamic type checking.

More complex static type systems enable more properties to be
checked at compile time. However, they impose additional burdens
on programmers over simpler type systems. To reduce the program-
ming effort, languages may support type inference, where types are
inferred automatically by the compiler based on how a particular
variable or object is used. Unfortunately, this can result in confusing
error messages when the inference fails, such as in the following
OCaml code [116, p3]:

1 let map2 f aList bList =
2 List.map (fun (a, b) -> f a b)
3 (List.combine aList bList)
4

5 let lst = map2 (fun (x, y) -> x + y) [1;2;3] [4;5;6]
6

7 let ans = List.filter (fun x -> x==0) lst

This produces the following error in ocamlc 4.08:
File "main.ml", line 5, characters 30-35:
5 | let lst = map2 (fun (x, y) -> x + y) [1;2;3] [4;5;6]

^^^^^
Error: This expression has type int but an expression
was expected of type

'a -> 'b

The problem is that the map2 function requires as its first argu-
ment a function that takes two arguments in curried form, but it is
provided one that takes two arguments as a pair. The correct call is
as follows:

5 let lst = map2 (fun x y -> x + y) [1;2;3] [4;5;6]

Not only is the error incorrectly localised, it also does not provide
sufficient guidance for fixing the error to the programmer. Both
problems are artefacts of the algorithm used for type inference.

In addition to errors that strictly violate the type system, some
compilers also generate warnings about common programming
errors, such as failing to initialise a variable or performing an im-
plicit type conversion in a context that is likely to be erroneous.
Prior work has also explored more advanced heuristics for detecting
likely errors [87, 203], at the cost of generating more false positives.

6.1.2 Error Localisation. The localisation of errors is a particularly
difficult problem. Syntax errors such as missing semicolons or curly
braces may be detected at a later point than the source of the error,
and error-recovery algorithms in parsers can further confuse users
by producing messages referring to spurious errors.

The following is a Java program that exemplifies the difficulty
with localising syntax errors:

1 class Main {
2 public static void main(String[] args) {
3 if (args.length > 0) {
4 int sum = 0;
5 for (int i = 0; i < args.length; i++) {
6 sum += Integer.parseInt(args[i]);
7 System.out.println("Sum: " + sum);
8 }
9 System.out.println("done");
10 }
11 }

The OpenJDK 11 compiler reports the following error:
Main.java:11: error: reached end of file while
parsing

}
^

1 error

In addition to the errormessage being particularly uninformative,
the reported line number is the last line of the file, while the source
of the error is likely on a previous line. In fact, the program can be
corrected by inserting a closing brace before line 7, after line 7, or
at line 11, each of which results in different program behaviour at
runtime. The compiler does not know the programmer’s intent, so
it only identifies an error when it reaches the end of the file without
encountering the expected closing brace.

Languages with sophisticated type systems also pose a problem
for localisation; type-inference rules can be complicated and non-
local, often resulting in inscrutable error messages that are far
from the source of the error, as in the OCaml example above. C++
template instantiation is another canonical example, where misuse
of library templates (e.g., attempting to insert a vector into an output
stream) produces errors in library code that the user did not write.

As an example, the following is an erroneous C++ program:
1 #include <algorithm>
2 #include <list>
3

4 using namespace std;
5

6 int main() {
7 list<int> items = { 3, 1, 4 };
8 sort(items.begin(), items.end());
9 }

The code populates a list of integers and attempts to sort it by
invoking the library function template sort on the begin and end
iterators of the list. However, the code does not compile, and GCC
7.3 produces the error message in Figure 3. The compiler reports an
obscure error within library code, and it proceeds to report every
overload of operator- that it found and why each one does not
work. This is because the call to sort causes the function template
to be instantiated with list iterators (std::_List_iterator<int>
in the error message), and the generated code is then checked for
errors. The code for sort applies the subtraction operator to the
given iterators. However, list iterators do not support subtraction,
so the compiler reports that it could not find an overload of the
subtraction operator that works on list iterators. The true source
of the error is that the programmer violated the requirements on

In file included from /usr/include/c++/7/algorithm:62:0,
from list.cpp:1:

/usr/include/c++/7/bits/stl_algo.h: In instantiation of 'void std::__sort(_RandomAccessIterator,
_RandomAccessIterator, _Compare) [with _RandomAccessIterator = std::_List_iterator<int>;
_Compare = __gnu_cxx::__ops::_Iter_less_iter]':

/usr/include/c++/7/bits/stl_algo.h:4836:18: required from 'void std::sort(_RAIter, _RAIter) [with
_RAIter = std::_List_iterator<int>]'
list.cpp:8:34: required from here
/usr/include/c++/7/bits/stl_algo.h:1969:22: error: no match for 'operator-' (operand types are
'std::_List_iterator<int>' and 'std::_List_iterator<int>')

std::__lg(__last - __first) * 2,
~~~~~~~^~~~~~~~~

In file included from /usr/include/c++/7/bits/stl_algobase.h:67:0,
from /usr/include/c++/7/algorithm:61,
from list.cpp:1:

Figure 3: Error message from GCC 7.3. The generating source is in Subsection 6.1.2.

sort, but the compiler does not know those requirements and can
only reason about the resulting instantiated code.

6.1.3 The Mapping Problem. Code transformations also compli-
cate error messages; errors may be detected in the transformed
code, with messages that refer to that code rather than the origi-
nal, pre-transformed code. Code transformation is supported at the
program level by languages with macros, such as Scheme, Haskell,
and C/C++. With embedded domain-specific languages (EDSLs), pro-
grammers write code in a host language using the abstractions
provided by the EDSL library, and the code passes through the
host compiler before being executed or further transformed by the
EDSL. Mapping back to the original code is therefore a significant
challenge when reporting errors [55, 88, 152].

The following example demonstrates the mapping problem in
R5RS Scheme:

1 (do ((vec (make-vector 5))
2 (0 (+ i 1)))
3 ((= i 5) vec)
4 (vector-set! vec i i))

The program has a typographical error on line 2, missing the
identifier i before the initial value of 0. The plt-r5rs interpreter
reports the following error:

do.scm:2:6: let: bad syntax (not an identifier)
at: 0
in: (let doloop ((vec (make-vector 5)) (0 (+ i 1)))
(if (= i 5) (begin (void) vec)
(begin (vector-set! vec i i) (doloop vec 0))))
location...:
do.scm:2:6

The canonical definition of a do loop in the R5RS specification
is a macro that transforms it into a let expression. The plt-r5rs
interpreter applies this transformation, resulting in an erroneous
let, and the error message refers to the transformed code rather
than the original program source code.

While the example above can be addressed by incorporating
direct support for the do syntax in the Scheme interpreter, user-
defined macros pose the samemapping problem, and the interpreter
does not have a priori knowledge of such macros.

6.1.4 Engineering Challenges. Improving error messages takes sig-
nificant engineering effort, and compiler developers generally pri-
oritise new features over improvements to error handling [202].
Incorporating better diagnostics can also lead to compiler code that
is less performant and maintainable; for instance, Lewis & Mulley
observed a 30% reduction in performance even after significant
optimisation in their Modula-2 compiler [117]. For syntax errors,
taking advantage of parser generators that produce higher-quality
error messages [40, 156] requires a language’s grammar to be re-
formulated in the restricted forms required by those generators.

At a higher level, compiler developers are very well-versed in
both the specification of the language as well as the internals of
the compiler. They therefore often design error messages in these
terms [202]. Additionally, compilers in general reason about pro-
grams in a different manner than most programmers [9]; the com-
piler’s primary task is to produce object or byte code, and it often
reports errors only as a byproduct of this process [57]. Finally,
compiler-development teams do not often (enough) include experts
in human computer interaction [202].

In Section 7 we discuss improving programming error messages
after they are generated by the compiler, which is a very different
endeavour to designing better messages from first principles. The
latter can take advantage of the information available during com-
pilation, while the former works with just the input and output of
the compiler.

6.1.5 Live Compilation. Classically, the compiler is fed a complete
program as input and compilation ends immediately when an error
is detected. We traditionally call such scenarios batch compilation.
However, with the advent of integrated development environments
(IDEs), it is commonplace that partial programs are given to the
analysis tool instead. And in contrast with the classical scenario, the
programmer desires that the tool processes as much of the available
program as possible even though an error might be found early



during checking. For example, a tool that provides auto-completion
will need to type check a program that is still being edited to provide
its information. In contrast with batch compilation, we call such
scenarios live compilation to emphasise that the code is still being
edited during analysis.

Live compilation introduces an additional pair of problems on
top of those that we have already raised that can prevent the gen-
eration of effective programming error messages. One of these
concerns is coping with partial programs. Traditional language
analysis algorithms, e.g., parsing and type checking, assume that
the program is complete. However, for a partial program, parsing
will fail to produce a complete AST so that type checking never
happens.

This leads to undesired behaviour in many common scenarios.
For example, consider the following partial Java program:

1 public class Program {
2 public static void main(String[] args) {
3 String input = args; // Type mismatch here
4 for (char c : input) {
5 // Editing cursor here
6 }
7 }

Here the partial program is grammatically correct save for the
missing contents of the for-loop. There is a clear type error here—
args has type String[]whereas input has declared type String—
but a traditionally-built compiler will never type check the program
to discover this fact. Instead, the compiler will report an unhelpful
parse error regarding the missing curly brace for the for-loop.

The other concern is incremental processing. In batch compilation
scenarios, invocations of the compiler are independent and share
little-to-no information. However, in live editing scenarios, the pro-
grammer adds onto existing code that has already been processed
in a structured manner. For small programs, it is fine to analyse the
code from scratch. However, for larger projects, re-analysis quickly
becomes an infeasible proposition.

6.2 Current Research
The challenges described in Section 6.1 cut across the entirety of the
compilation pipeline. However, the work addressing these issues is
often contained within individual parts of the compilation pipeline.
Here we sample this work to demonstrate how these challenges
are being addressed in the literature. We restrict ourselves in this
section to approaches that address these challenges directly, fo-
cusing primarily on techniques within compilers, interpreters, and
analysis tools; Section 7 will discuss in detail work that enhances
programming error messages external to these program analysis
tools.

6.2.1 Parsing. Work on improving error messages in the parsing
phase reaches back over five decades. For example, Gries described
a parser that incorporated common errors and recovery actions into
the parsing table [76]. Commonly used parser generators support
error productions to enable recovery from parsing errors, avoiding
spurious errors after an initial one [115, 210]. Many other schemes
have been implemented for error recovery, with the common goal
of maximising the set of true errors detected while minimising
false positives [40, 57, 75, 100]. More recent work has focused on

improving the quality of errormessages rather than the quantity [89,
112], and on automatically correcting syntax errors [60, 100, 205].

Production compilers usually attempt to maximise the number
of errors found. However, this is not necessarily ideal for novice
programmers, who are often better served by focusing on just
the first error [21, 57]. Compilers such as GCC and Clang include
options to configure the limit on the number of errors reported.

6.2.2 Type Inference. Several techniques have been used to im-
prove the quality of error messages in the presence of type infer-
ence. A common approach is to improve type-inference systems
to better localise type errors, such as by modifying algorithms to
avoid left-to-right bias, making use of a global constraint graph,
or otherwise increasing the amount of information tracked by the
inference engine [63, 79, 86, 87, 114, 137]. There has also been re-
cent work to develop more sophisticated constraint systems to
perform inference in complicated type systems, identifying the
actual program locations that cause a type error [168, 169, 217].
These algorithmic improvements lead to better localisation as well
as higher-quality error messages. Type checkers may also employ
heuristics to identify the true source of an error, as well as to sug-
gest possible fixes [62, 79, 87]. Other systems allow a library to
specify custom type checking for code that uses the library [86].

6.2.3 Metaprogramming. Recent versions of C++ have taken steps
toward addressing the locality and mapping problems in the con-
text of metaprogramming. C++11 introduced static assertions and
type traits, allowing library writers to customise error messages if
a type requirement is not met [94]. C++20 will contain concepts
and requires clauses, incorporating better constraint checking into
the template instantiation system [95]. As an example, adding a
requirement to the standard sort function template that the argu-
ments must be random-access iterators should enable the compiler
to produce a better error message than that in Figure 3, e.g., by
reporting that a list iterator is not a random-access iterator.

EDSL frameworks often provide mechanisms for detecting errors
pre-transformation, avoiding the mapping problem and providing
better error localisation. The Proto framework for defining expres-
sion templates in C++ provides a meta-function for matching an
EDSL expression against a grammar, producing a readable error
message in the case of a mismatch [152]. Another approach is to
modify the type checker of the host language to apply specialised
type rules to code written in the EDSL [184]. Finally, EDSLs them-
selves can be architected to perform error detection directly [55].

6.2.4 Runtime Errors. As listed in Table 1 only 8 papers in our cor-
pus were tagged as relating to “runtime errors”. Only two of these
are post 2010 and almost all are specific to a particular language or
domain such as parallel computing [122, 123]. For an interesting
historical account, the reader is guided to [204].

6.2.5 Cross-cutting Approaches. Some tools for improving error
messages apply techniques that are agnostic to the specific compi-
lation phase that produces an error. Often, these systems treat the
compiler as a black box, working solely with the program source
code, whether or not the compiler signals an error, and the error
messages that the compiler reports. One such technique is to make
incremental mutations to the program source code to identify what
changes result in successful compilation, to improve localisation



of an error as well as to suggest possible fixes. This is similar to
the concept of delta debugging [216], and it has been applied to
improve the quality of type errors as well as to identify fixes for
more general programming errors [29, 116, 159, 180]. Recent work
has also applied machine-learning techniques toward localisation
and suggested fixes, such as training language models on correct
code [60], extracting features from erroneous code to train error
models [213], and training neural networks on correct and erro-
neous variants of the same program [3, 78].

Much of the work on cross-cutting approaches has been done
in the context of enhancing error messages through external tools,
rather than directly within compilers or interpreters. Section 7
discusses these techniques in more detail.

7 ENHANCEMENT
Much work involving programming error messages in recent years
(and the less active preceding decades) has been reactive. This is
often due to researchers and practitioners witnessing the trouble
that many students have with these messages, possibly having
had a similar experience themselves, and seeking to alleviate these
problems by making standard messages better by ‘enhancing’ them.
Providing more detailed error messages to students has been identi-
fied as a strategy to combating the difficulties faced when learning
programming [165]. However, this does not imply that longer, more
verbose messages are better, and with more information comes the
risk of misinterpretation on the student’s part and genuine error
on that of the system – for instance when the system suggests
fixes that are not guaranteed (which is normally the case). This is a
deceptively complex area to conduct effective research in, largely
because there are three components: the user, the system, and the
message itself. More specific difficulties come about because such
research:

• can span almost all programming languages;
• can span almost all programming environments;
• is closely intertwined with other linguistic and environmen-
tal features (e.g. some languages may have more usable mes-
sages than others; some environments may present these
messages via differing mechanisms with differing effects)

• spans several computing domains including technical, peda-
gogical and human computer interaction; and

• must take into account fundamental domains such as: human
psychology (message ‘tone’ and presentation, etc.), educa-
tion (interpretation of feedback) and natural language (pro-
gramming error messages are by definition a mix of natural
and programming language, and their readability – from a
fundamental perspective – is important).

7.1 What is Message Enhancement?
What exactly constitutes enhancement of a programming error
message, and how to properly refer to it, is complex. In Sections 2.2
and 3.3 we laid out our definition of “message” for the purposes of
this study as text-based messages emitted by a compiler or inter-
preter (often passed on by an environment/IDE/editor) in response
to a programmer-committed error. “Error” itself is defined in Sec-
tion 3.2.

As such we consider enhancement to be altering the text of a
message for the purpose of improving the usefulness of the message
in terms of aiding a human in fixing the error that generated it. This
excludes underlining code, icons alerting the user to an error or
message, etc. Even with a relatively tight definition however, there
are grey areas. For instance BlueJ (up to and including version 3)
only presents one message at a time (textually), even if multiple
messages were emitted by the compiler. Whether or not this is
considered enhancement is debatable. Although not necessarily
altering a given single message, this mechanism does alter the text
of a number of messages (by excluding the text of all but the first).
Other environments (including BlueJ 4) sometimes concatenate
messages (but otherwise do not alter them) for instance, so they fit
neatly in a pop-up window.

Although “enhancement” is a commonly used term, particu-
larly in recent years, and especially when dealing with the text
of programming messages [18, 50, 158, 163], “enhancement” and
variants such as “enhance” are not universally used. For instance,
“improved” has been used by a small number of recent papers [106].
Other terms include “supplemental” [41, 200]. The programming
languages community also uses other terminology: LLVM7 calls
them “expressive diagnostics”, while Rust8 has “explanatory error
messages” and “extended error messages”9.

For the purposes of our work, and consistency with prior work,
enhancement refers to the action of a tool, to improve the presen-
tation of errors as presented by another tool such as an IDE or a
compiler. For instance, Becker designed and utilised a Java editor
that enhanced the text of standard javac error messages [15] and
Karkare (with Umair et al.) have worked with C [4]. Similarly, Auto-
mated Assessment Tools (AATs) have been designed that enhance
messages. For instance, Denny et al.with Java [50], while Prather et
al. [163] and Pettit et al. [158] have worked with AATs that utilise
C++.

Many modern tools and environments do more than just ‘relay’
message text from the compiler to the user. Regardless of whether
the text is enhanced, there are many other ways of presenting
messages that could be considered to be enhancement. Examples
include pop-ups with message text as in BlueJ 4, icons such as
Eclipse’s ‘lightbulbs’, that provide further “supplemental” informa-
tion, and even suggestions on how to resolve the issue causing the
message, although in some platforms these can be misleading [15].
For the purposes of this paper we limit the definition of enhance-
ment to the modification of the text emitted by the compiler. This
is for several reasons, but two primary ones:

(1) that is where the bulk of the work, both recent and historical,
has been focused ; and

(2) going beyond text modification opens up an almost lim-
itless array of features and actions that could possibly be
considered enhancement. As discussed above, underlining,
highlighting, pop-ups and other mechanisms are becoming
quite common. Interestingly, such features are rarely studied
but there is some interest in this [101].

7http://clang.llvm.org/diagnostics.html
8https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
9Much of this discussion on terminology was informed through personal correspon-
dence with the first author of [10]

http://clang.llvm.org/diagnostics.html
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html


It is important to note that one related area that may be confused
with error message enhancement is finding/correcting/studying
(often syntax) errors (not programming error messages) in code.
Some researchers believe this to be a more fruitful avenue. For
instance Kölling &McCall just this year stated: “Various past studies
have analysed the frequency of compiler diagnostic messages. This
information, however, does not have a direct correlation to the types
of errors students make, due to the inaccuracy and imprecision of
diagnostic messages.” [140, p38:1]. Yet, as we have seen in this
report, much work has focused on messages. In fact, “improve
automatically generated diagnostic messages” is listed as future
work by [140, p.38:22].

Blurring lines even further, some tools that find errors in code
provide feedback in the form of messages (for instance, see [26]).
However, such messages originate in a tool/analyser external to
the compiler/interpreter. As these messages do not originate in the
compiler/interpreter, and are not therefore modified versions of
the messages produced by them, we do not consider them to be
enhanced programming error messages.

Regardless, going ‘beyond text’ is beyond the scope of this paper
which is aimed at providing an overview of the work that has
been done (which focuses on message text), and to provide a set of
guidelines for message design where again, most prior work refers
to text-based messages. In Section 7.4 we briefly discuss possible
short-term future trajectories before touching on wider (beyond
enhancement or beyond text) directions in Section 7.5.

7.2 A Brief History of Message Enhancement
7.2.1 Pre-2000: Sparse Activity. Although work on error message
enhancement goes back over half a century – the earliest paper we
found on the topic was from 1965 [177] – out of the 107 papers we
tagged as enhancement, only 10 were pre-2000. Another 31 were
from 2000-2009, and the remaining 66 were from 2010-present, with
41 from 2015-present. Figure 4 shows this growth on a decade-by-
decade basis.

The earliest paper on enhancement we found (and also the oldest
in our combined corpus) dating from 1965, was on PUFFT (Purdue
University Fast FORTRAN Translator) a translator for FORTRAN

Figure 4: Number of articles per decade tagged as “Enhance-
ment”, appearing in both our original corpus and found
through quasi-systematic search.

IV which included a “rather elaborate diagnostic message writing
routine” [177, p661]. DITRAN (DIagnostic FORTRAN ), an imple-
mentation of FORTRAN with rather extensive error handling ca-
pabilities [146] soon followed. Interestingly, like PUFFT, DITRAN
was not a tool that performed enhancement as became prevalent
in the time between then and now (“intercepting” programming
error messages and enhancing them after they had been generated)
but an implementation of FORTRAN. It was therefore more similar
to very recent efforts in designing new languages that have error
messages in mind from the design phase, ab initio, despite the fact
that DITRAN was reactive – in as much as it was trying to im-
prove upon FORTRAN – it was not intended to be an entirely new
language. (This is yet another grey area of programming error mes-
sage enhancement.) Nonetheless, DITRAN had a repertoire of 300
messages. As discussed in Section 5, FORTRAN was not designed
for teaching, but was used for teaching, especially early in terms
of computing education. In fact, PUFFT and DITRAN were created
with students in mind, as were WATFOR (WATerloo FORTRAN)
and WATFIV (WATFOR’s successor) which also included an im-
pressive number of custom error messages [43]. A full listing of
WATFOR and WATFIV messages are presented in [43].

In 1987 Kantorowitz & Laor developed a ‘syntax error handling
system’ for Pascal that was “particularly good at avoiding mislead-
ing messages” [100, p632] in student code. In 1995 Schorsch intro-
duced CAP (Code Analyzer for Pascal) [182], the first enhancement
effort for a teaching language that we encountered. CAP provided
automatic, user-friendly feedback on syntax, logic and style errors
in Pascal programs, and also provided enhanced error messages as
the stock Pascal messages were often deemed insufficient.

Despite a small number of studies, those that do exist pre-2000
are predominantly small-scale and often the evidence they present
is anecdotal in nature. Nonetheless many are fairly monumental
achievements in terms of the work required – such as implementing
FORTRAN interpreters largely or entirely from scratch.

7.2.2 2000-2009: Still Largely Anecdotal. Fuelled by the internet
and cheap storage, the ability to easily log large volumes of student
data became possible. This led to increased attention on program-
ming error messages in the first decade of this century. However
heavy-weight efforts like those prior to 2000 did continue as well,
although some technically do not meet our definition of enhance-
ment. For instance in 2003, Hristova et al. developed Expresso,
an ‘error detection advisory tool’. Although Expresso was a pre-
processor, it did have its own error messages that circumvented
the compiler altogehter. Similar tools were developed around the
same time, sometimes as part of larger systems. One such example
is Dr. Scheme [69] (which became Dr. Racket [132]) and included
language levels/subsets with customised error messages for each
level/subset.

On the enhancement front, Flowers, Carver & Jackson devel-
oped Gauntlet in 2004, a system that explains the syntax errors
students encounter while learning Java [72]. Thompson developed
GILD, an IDE for beginner Java programmers, which provided 51
"supplemental" error messages [200]. Coull presented a support
tool called SNOOPIE (Supporting Novices in an Object Oriented



Programming Integrated Environment). SNOOPIE, rather than re-
placing programming error messages geared for experts, presented
supplementary messages more suitable for novices.

During this period a greater ease of access to data led to an
increased rate of publication. However this also seems to have con-
tributed to a large number of fairly trivial experiments presenting
largely anecdotal evidence.

7.2.3 2010-2015: Increasing Empiricism, Conflicting Results. In 2011
Hartz developed CAT-SOOP, a tool which allows for automatic
collection and assessment of various types of homework exercises
in Python. The tool includes an error analyser that provides “simple
explanations of common error messages in plain English” [84, p42].
The original error message generated by Python is still displayed,
but is augmented by a simple explanation of what the error message
means, in the hope that students will begin to connect the simple
explanation with the error message that the interpreter generates.
This advice was put forward by Coull [41, 42] and later followed by
Becker et al. [15, 18] who developed a Java editor called Decaf that
intercepted and re-worded 30 of the most frequent Java error mes-
sages. Empirical evidence from a control/treatment study involving
hundreds of students and over 50,000 programming error messages
showed that Decaf reduced student error frequency, and reduced
indications of struggling students. A year prior to this, Denny et al.
provided enhanced error messages in the Automatic Assessment
Tool, CodeWrite [52], and found that enhancing compiler error mes-
sages was ineffectual [50]. However a closer analysis found that
directly comparing the Becker et al. and Denny et al. studies yielded
inconclusive outcomes, the most conclusive being that comparing
(even very similar) studies in this arena is quite challenging.10.

7.3 Current Results in Enhancement
The Decaf editor was used in several more studies, most showing
statistically significant but not very overwhelming support for en-
hancing compiler errormessages [15, 18–20]. These studies spanned
a few different contexts including semester-long ‘free-range’ pro-
gramming in addition to a controlled programming quiz [19]. Si-
multaneously a few other studies developed along similar lines,
but often as automatic assessment tools as opposed to editors. Pet-
tit et al. tackled recent conflicting evidence head-on and came up
none-the-better with “Do Enhanced Compiler Error Messages Help
Students? Results Inconclusive” [158]. That study utilised Athene,
an automated C++ assessment tool. On another hand, Harker used
Decaf independently of Becker and had similar results, partially
replicating them [80]. It should be noted that replication work
in computing education is not performed as much as it should
be [1, 49, 155, 219] and the area of error message research is no
exception. Prather et al. used the same software as Pettit et al. [158]
but a very different think-aloud protocol and found results similar
to Becker in that there seems to be weak positive effects associated
with enhancing compiler error messages. In 2017 and 2019 Kohn, in-
vestigating enhanced Python programming error messages, found
mixed results as well [105, 106].

It is likely that much of the recent (post-2000) interest in program-
ming error message enhancement can be attributed to continually
10https://cszero.wordpress.com/2016/11/18/you-are-what-you-measure-enhancing-
compiler-error-messages-effectively/

improved technical capabilities in logging student data, particularly
compiler activity and source code (not just programming error mes-
sages) on ever-growing scales [190]. This, coupled with a lack of
tangible results in the area and increased rigour in computing edu-
cation research, culminated in an explosion of studies (keeping in
mind the context), many presenting empirical evidence on the effec-
tiveness of error message enhancement. For instance, the Blackbox
project has been logging compiler activity of Java programmers
using the BlueJ pedagogical editor [109] and as of 2018 has logged
over 306 million compilation events including all error and warning
messages [32]. As of March 2018, 19 primary Blackbox studies had
been published [32]. Five of these relied solely on Blackbox error
messages with two looking at the content of the messages.

Additionally, and quite recently, language and compiler designers
have shown an interest in providing better error messages from first
principles with languages such as Elm11 and the Clang project12
putting dedicated effort into the effectiveness of diagnostic mes-
sages. Additionally, Quorum is in the beginning phases of doing
the same13, and the most recent version of GCC (version 8)14 has
had some error messages improved, for instance to provide more
accurate error location. GCC 8 also provides some ‘fix-it hints’ so
that IDEs can offer to automate the fix. It is possible that some
of this is a reaction to the growing base of work on ‘fixing’ com-
piler error messages through enhancement, a growing focus on
human computer interaction and user experience issues, natural
progression, or a combination of these. Regardless, these efforts
are certainly viewed as a positive step in terms of language and
compiler design.

7.4 Into the Future
It is unclear what direction programming error message enhance-
ment will take. There are however extremely promising trajectories
developing in related areas that might end up rendering enhance-
ment unnecessary which is surely a better solution, should it be
achievable. After all, enhancement is a post hoc fix by definition.
Surely there must be a better way – “It is unreasonable to think
that enhancing compiler error messages will completely alleviate
the problems students have with them” [14, p81].

In 2012 Watson, Li & Godwin introduced BlueFix, an online
tool integrated into BlueJ that uses crowd-sourcing to assist pro-
gramming students with error diagnosis and repair, with greater
effect than standard programming error messages [207]. Working
along similar lines but several years later, Thiselton & Treude have
proposed Pycee, a plugin integrated with the Sublime Text IDE
that provides enhanced programming error messages for Python
programmers [199]. The enhanced messages are constructed by au-
tomatically querying Stack Overflow. Also utilising Stack Overflow,
Wong et al. [211] explored a methodology to automatically extract
a corpus of syntax errors and their fixes, data that could be used to
develop better messages.

In 2019, Ahmed et al., building on prior work [3] published a
paper on arXiv detailing a system called TEGCER that also pro-
vides automated feedback in lieu of standard programming error
11https://elm-lang.org/blog/compiler-errors-for-humans
12https://clang.llvm.org/diagnostics.html
13https://quorumlanguage.com/evidence.html
14https://developers.redhat.com/blog/2018/03/15/gcc-8-usability-improvements/

https://cszero.wordpress.com/2016/11/18/you-are-what-you-measure-enhancing-compiler-error-messages-effectively/
https://cszero.wordpress.com/2016/11/18/you-are-what-you-measure-enhancing-compiler-error-messages-effectively/
https://elm-lang.org/blog/compiler-errors-for-humans
https://clang.llvm.org/diagnostics.html
https://quorumlanguage.com/evidence.html
https://developers.redhat.com/blog/2018/03/15/gcc-8-usability-improvements/


messages. The system uses supervised machine learning models
trained on more than 15,000 error-repair code samples and has a
stated accuracy of 97.7% across 212 error categories [4]. Both of
these approaches are claimed to outperform DeepFix [78]. Another
avenue showing promise are feedback hints and alternative means
of helping students correct errors. For instance, the system pre-
sented by Marwan et al. provides “expert-authored help messages,
often in response to specific errors in student code” [134, p521].
These works and others may hold promise to possibly augment,
or perhaps eventually eliminate the need for programming error
message enhancement.

7.5 Beyond Enhancement
An often overlooked fact is that there are situations and environ-
ments where (at least syntax) error messages need not occur at all.
In 1983 Brown noted “. . . some programming environments remove
the need for certain error messages altogether” [36, pp248-249] (em-
phasis ours), citing the Cornell Program Synthesizer [197] and the
Interlisp system [198]. Interlisp was an environment based on Lisp
and “for experts” [198, p26] while the Cornell Program Synthesizer
was a syntax-directed environment for students.

However, environments that are popular today for children suc-
cessfully eliminate the need for (text-based) programming error
messages. For instance most block-based environments such as
Scratch avoid text-based text messages altogether as explained
by [130, p16:5-16:6]:

When people play with LEGO® bricks, they do not
encounter error messages. Parts stick together only in
certain ways, and it is easier to get things right than
wrong . . . similarly, Scratch has no error messages.
Syntax errors are eliminated because, like LEGO®,
blocks fit together only in ways that make sense. . . .Of
course, eliminating error messages does not eliminate
errors . . . [however] a program that runs, even if it is
not correct, feels closer to working than a program
that does not run (or compile) at all.

Although the jump from Scratch to the complexities of high-level
industrial-strength languages such as Java might seem great, there
is progress being made. For example, frame-based editing such as
Stride [5] allows more complex programming with the elimination
of at least some common syntax errors by design.

8 GUIDELINES
As discussed above, there is a long history of reporting on the diffi-
culty of programming error messages. Running in tandem with that
is a rich history of researchers suggesting design guidelines for im-
proving those error messages (or writing better ones from scratch).
Most of these suggestions, especially in the 1960s, 1970s, 1980s, and
1990s, were based on anecdotal evidence or expert opinion. Other
guidelines, although based on thorough research, are not presented
as such in the published literature15, although they are sometimes
leveraged in practice16. Modern software engineers have always
had ideas about how to write better error messages and this trend
continues up to the present [151]. However, these have slowly given
15https://docs.racket-lang.org/htdp/#%28part._error-guidelines%29
16https://quorumlanguage.com/evidence.html

way to a rise in guidelines that have been empirically validated.
In the sections below, we have attempted to collect as many of
these guidelines as possible and organise them into relevant groups,
including anecdotal, but relying on empirical evidence. Throughout
the decades of work on this topic, it appears that shifts in design
mentality followed major shifts in industry tools (see Figure 5).
Over the past 60 years, researchers have mostly suggested the same
kinds of guidelines that language creators and maintainers should
follow to make programming error messages more usable. This
alone is interesting because, even though programming languages
have drastically changed in that time period and countless new
ones have appeared, it reveals that we mostly still have the same
kinds of problems we had 60 years ago. However, particularly in
the last decade as noted below, some newer languages and updates
to old standard bearers alike have been starting to make efforts
towards implementing some of these guidelines. Moreover, new
research within the past year has brought about new directions for
programming error message guidelines in areas such as cognition,
rational argumentation, and timeliness of the presentation of error
messages.

All of the papers in both our original corpus and literature search
that were tagged as offering guidelines or pre-guidelines were anal-
ysed for the types of suggestions made. We found 10 general cat-
egories of guidelines that could be considered to be generalised
guidelines. The papers were further classified as to the evidence
presented for the guideline suggestions. Papers published prior to
the year 2000 with an assumption of text based interfaces were
classified as historical, and papers which attempted to provide ex-
perimental evidence to support their guidelines were classified as
empirical. All other papers were classified as anecdotal. The in-
tersection of guidelines espoused and evidence supported can be
found in Table 2.

The majority of papers did not attempt to provide comprehen-
sive guidelines, but rather focused on a particular set of suggestions.
There were, however, four papers which attempted to provide over-
arching, concrete guidelines for error message creation: Horning
(1976) [90], Schneiderman (1976) [187], Traver (2010) [202] and
Barik (2018) [9]. We compare the generalised guidelines we ex-
tracted from our corpus to those proposed in these works. Out of
22 guidelines proposed by these four authors, our ten generalised
guidelines encapsulate all but two as shown in Table 3.

In the remainder of this section, we analyse each of the ten
guideline categories we found, reporting on their history, current
state of development, and the level of empirical support for their
adoption.

8.1 Increase Readability
Horning lists ‘readability’ as a criterion that good error messages
should exhibit [90], but fails to provide any mechanism to assess
readability. Authors have used a variety of terms to describe read-
ability, such as saying that error messages must be ‘comprehensi-
ble’ [187], use ‘plain language’ [142] or be ‘simplified’, using ‘famil-
iar vocabulary’ [132], and not be ‘cryptic’ [187] or use ‘technical
jargon’ [142]. However, no authors have provided concrete ad-
vice as to how to achieve or assess readability in error messages.

https://docs.racket-lang.org/htdp/#%28part._error-guidelines%29
https://quorumlanguage.com/evidence.html


Table 2: Classification of papers by guidelines suggested, and evidence presented. The category “Historical” refers to papers
published before the year 2000, “Empirical” to those providing experimental evidence, and “Anecdotal” to the remainder.

Historical Anecdotal Empirical

Increase
Readability

[37] [47] [64] [74] [93] [186]
[187]

[71] [209] [215] [67] [72] [89]
[90] [104] [124] [138] [142]

[194] [201] [202]

[128] [145] [41] [106] [132]
[133] [148] [150] [149] [154]

[174] [214]

Reduce
Cognitive Load [37] [47] [146] [187] [208] [67] [91] [100]

[128] [145] [9] [21] [106] [150]
[149] [153] [163] [162] [207]

Provide
Context

[36]
[123] [215] [42] [67] [69] [90]
[91] [100] [104] [124] [201]

[202] [212]
[11] [8] [9] [150] [153] [214]

Use a
Positive Tone

[37] [47] [64] [93] [186] [187]
[208]

[71] [209] [72] [89] [90] [91]
[202] [145] [148]

Show Examples [93]
[128] [9] [110] [154] [159]

[163] [199] [207]

Show Solutions
or Hints

[64] [146] [215] [42] [89] [100] [138]
[142] [201] [202]

[128] [14] [83] [110] [132]
[133] [148] [153] [159] [174]

[178] [199] [207]

Allow Dynamic
Interaction

[36] [37] [47] [71] [42] [142] [194] [202]
[128] [9] [10] [159] [163] [199]

[207]

Provide
Scaffolding [74] [208] [42] [72] [201]

[11] [8] [10] [14] [132] [133]
[163] [162] [207] [214]

Use logical
argumentation [9] [10]

Report errors at
the right time [69] [72] [159] [178]

Readability metrics have been applied to source code, with little
success [45].

There are multiple measures of readability for ‘normal’ prose,
including the Fry Readability Graph (see Figure 6), Flesch formula,
Dale-Chall formula, Farr-Jenkins-Paterson formula, Kincaid for-
mula, Gunning Fog Index, and Linsear Write Index [118]. However,
there are currently no papers that attempt to apply these measures
to programming error messages.

There is clearly wide anecdotal (or, common-sense) agreement
that readability is important, with approximately 50% of the guide-
lines papers discussing or mentioning readability in some way.
While most of the papers don’t feel the need to motivate readability
as a guideline, Flowers et al. [72] mentions that readable messages
are more memorable, and Traver [202] argues that writing more
readable error messages promotes error correction by ‘recognition
rather than recall’.

Readability in various forms was included in 11 of the 25 papers
with empirical evaluations of their guidelines, with several show-
ing that systems which include more readable error messages had
positive impacts on error rates and repeated errors [14], improved
student satisfaction [214], and reduced frustration [174]. However,
none of these systems assessed the effects of readability in isolation,
nor did any paper formally define a rubric for evaluating readability.

8.2 Reduce Cognitive Load
Cognitive Load Theory (CLT) states that humans have a finite
ability to efficiently process input based on working memory (in-
trinsic) and situational/contextual (extrinsic) factors [195]. Long
before it was first proposed in the 1980s and then first discussed
in the context of computing education in 2003 [185], researchers
investigating programming error messages were prescribing sim-
plicity and elegance for the sake of the user [100, 146, 187, 208].
These early insights by researchers about reducing the complexity
of error messages were largely confirmed by the fact that error
rates can be used as an indirect measure of cognitive load [6, 7].
These kinds of recommendations about simplicity and minimalism
have continued in both anecdotal reports [67] and empirical stud-
ies [14, 21, 106, 153, 207]. However, recent empirical research has
begun to incorporate cognitive science and CLT directly into work
on programming error messages [9, 162, 163]. The most extensive
work in this area provides three guidelines to reduce cognitive load
in programmers receiving error messages to maximise working
memory: place relevant information near the offending code, re-
duce redundancy so the user does not process the same information
twice, and use multiple modalities to provide feedback [91].



Figure 5: History of design guidelines for error messages in program analysis tools. In tandem with design guidelines, signifi-
cant shifts in industry tools are indicated in bold. Key: Moulton & Muller [146]; Horning [90]; Dean [47]; Shneiderman [187];
Brown [36]; Kantorowitz & Laor [100]; Shaw [186]; Traver [202];Murphy-Hill & Black [150];Murphy-Hill, Barik, & Black [149].
To bring this timeline up to the current date, we would add [9]. Image and caption ©Titus Barik [9], used with permission.

8.3 Provide Context to the Error
The context of a programming error refers to information about
the program code that is relevant to the error, and that will help
make understanding and addressing the error easier (through an
informed, accurate message). For example, the context can include
the location in the code where the error occurs as well as infor-
mation such as symbols, identifiers, literals, and types, involved in
the error [69, 90, 123, 201, 215]. For run-time errors, the contextual
information extends to the state of the memory during execution,
including variable values and stack traces [90, 124]. In early text-
based computer interfaces, the editor and compiler were typically
separate programs (both in design and use) so providing locational
context consisted of printing the code around the error that oc-
curred [36, 100, 124, 186]. With the introduction of the integrated
development environment, the error message can be displayed si-
multaneously with source code in the editing environment [67, 69].

In more modern development environments, the editing interface
can graphically highlight the error location or place error messages
beside offending code [91, 150, 212, 214].

Despite context being important, at least some programming
error messages, in languages such as Java, can imply more than
one context which could seem like providing the wrong context, as
noted by Kölling & McCall [138, p2] (also mentioned in Section 1.1):

• A single error may, in different context, produce
different diagnostic messages, and

• The same diagnostic message may be produced by
entirely different and distinct errors.

Barik [9] recommends that error messages appear in the text
editor, the primary construct through which the programmer inter-
acts with code (see Figure 7). Becker [18] advocates for the original
and enhanced error messages (see Section 7) to be presented side-
by-side so that students can become accustomed to the cryptic



Table 3: Generalised guidelines extracted from the corpus compared to those presented in Horning [90], Shneiderman [187],
Traver [202], and Barik [9].

Corpus Horning (1976) Shneiderman (1982) Traver (2010) Barik (2018)

Increase Readability
Concise yet distinctive,
User directed

Comprehensible Clarity and brevity,
Programmer language

Implement rational
reconstructions for
humans, not tools

Reduce Cognitive Load
Source oriented,
Readable, Specific

Brief Consistency, Specificity

Provide Context
Localize the problem,
Visible pointer

Specific Locality
Use code as the medium
through which to
situate error messages

Use a Positive Tone
Restrained and polite

Positive, Constructive,
Emphasize user control
over the system

Positive tone,
Nonanthropomorphism

Show Examples

Show Solutions
or Hints

Suggest corrections Constructive guidance Distinguish fixes from
explanations

Allow Dynamic
Interaction

Extensible help
Give developers
autonomy over error
message presentation

Provide Scaffolding

Use Logical
Argumentation

Present rational
reconstructions as
coherent narratives of
causes to symptoms

Report Errors at
the Right Time

Not mentioned in corpus Standard format,
Complete

Visual design,
Context-insensitivity

unenhanced error messages. However, there is conflicting evidence
of the benefits of graphically highlighting errormessages (as there is
for syntax highlighting [23, 179]). Barik et al. [11] demonstrate that
diagrammatic annotations of source code with highlights, descrip-
tions, and arrows can help developers comprehend programming
error messages. Nienaltowski et al. [153] found that highlighting
the error location in code helped students fix errors more quickly
but did not increase novice programmers’ ability to correct errors.
Regardless, there is agreement on the evidence for the importance
of the accuracy of error location reports. Traver [202] notes that pro-
viding the user with an incorrect error location makes the message
more confusing for the programmer. Similarly, Wrenn & Krishna-
murthi [212] report that students found highlighting of the error
location in code to be helpful when it is correct, but frustrating
when it is incorrect.

8.4 Use a Positive Tone
It is a tenet of human computer interaction that a computer’s com-
munication is akin to human communication. Therefore, how a
computer communicates, or its tone, is just as important as what it

communicates. As Shneiderman points out, this is a problem “when
novices encounter violent messages ..., vague phrases ... , or obscure
codes ... , they are understandably shaken, confused, dismayed, and
discouraged from continuing” [187, p610].

There is a universal agreement in the literature that error mes-
sages should have a positive tone [64, 91, 187, 202]. This is described
in a variety of ways including ‘polite’ [37, 89, 90], ‘restrained’ [90],
‘friendly’ [47, 148, 209], and ‘encouraging’ [91]. Horning [90] even
claims that the computer should seem subservient to the program-
mer when reporting error messages. Other positive tone-based
principles focus on avoiding words with a negative valence, like
‘incorrect’, ‘illegal’, and ‘invalid’ [64, 187, 202]. The positive-tone
design principle also appears in guidelines to avoid in crafting error
messages including avoiding placing fault or blame, scolding, or
condemning the user [37, 47, 64, 93, 145, 187, 202, 209]. Buxton
& Trennor argue that “Programmers need to see error messages
not just as the functional reporting of errors, but as a means of
communicating with users to increase their efficiency” [37, p197]
and saw the friendliness of error messages as being an important
part of this communication.



Figure 6: Fry readability graph. The reading difficulty level
(white circles) is determined by the average number of sen-
tences (y-axis) and syllables (x-axis) per 100 words. When
plotted onto a specific graph the intersection of the average
number of sentences and syllables determines the reading
level of the content. Image:p user ‘J’ at English Wikipedia.

–– [E002] Syntax Warning: test/try.scala ––––––––-
3 | try {

| ^
| A try without catch or finally is equivalent
| to putting its body in a block; no exceptions
| are handled.

4 | foo()
5 | }

Figure 7: Programming error message generated by the
Dotty compiler (Dotty is a superset of Scala) [147]. Notice
the error appears inline with the code and each error is vi-
sually separated via code locality.

Figure 8: Example of feedback messages in the CAP system
described by Schorsch [182].

These suggestions lead to the following general programming
error message guideline: use a positive tone. Under debate, and
worthy of further study into efficacy, are the tone-based design
principles of anthropomorphisation and humour. In 1995, Schorsch
wrote the tool CAP, which used humour in its error messages [182].
These messages were sarcastic, made light of the error by poking
fun at the user, and often blamed the user as well (see Figure 8).
CAP’s use of humour is contrary to a growing body of evidence on
how novices learn, may contribute to learners feeling like they don’t
“get it,” and is against the tenets of human computer interaction.
Flowers reported on enhanced error messages in Gauntlet using
humour to create messages that are more fun, and they anecdotally
report that students respond positively [72]. However, Isa et al. [93]
& Wexelblat [208] argue against using humour in error messages
because the humour of a message diminishes with subsequent
exposure and the inclusion of humour is antithetical to creating
brief and informative messages [13]. Humorous programming error
messages can also be misinterpreted. Sarcasm, as per Schorsch [182]
for example, could be perceived as blaming.

Lee & Ko [113] demonstrate effective use of anthropomorphised
error feedback. They argue that it succeeds because novice pro-
grammers see programming tools as cold and judgemental and
that by personifying the tool programmers can attribute failure to
the computer instead of themselves. Shneiderman [188], however,
argues that personifying the computer may mistakenly give users
the impression that the computer is sentient or that it can think.
This is most likely more important for younger learners or those
with limited prior exposure to technology – two groups that are
set to become more numerous in programming education in the
near future. Anthropomorphising the computer may then lead a
programmer to develop an incorrect mental model for how the
computer works, a potential problem for writing correct programs.

8.5 Show Examples of Similar Errors
A novice programmer will most likely spend many more hours
engaged with the programming environment than they will with an
educator. The environment thus becomes a proxy for the educator,
and the rate at which a student is able to correct their errors and
learn the new programming language will be directly influenced
by the quality and amount of relevant information provided as
feedback by that environment.

At the time the environment detects an error in a programmer’s
code, it has access to (possibly a lot of) contextual information about
the error and the context in which it is found. While it is important
that an error is correctly and clearly reported, there appears to
be no consensus as to how much of this additional contextual
information the compiler should provide. As identified, brevity
offers many advantages, but providing complete information is
likely to improve the student’s understanding of the error and
reduce the likelihood of repeating the mistake. Central to this issue
is the very role of the environment – whether it is to assist the
programmer in correcting errors or more simply to just inform the
programmer of the reasons errors occurred.

In the same manner that programming language textbooks intro-
duce concepts by example, the environment/compiler/interpreter
has the opportunity to provide a more detailed explanation of an



Figure 9: Programming error message generated by the
CodeWrite system described by Denny et al. in [50]. The er-
ror message has been enhanced with an example of a simi-
lar error and its corresponding resolution. Displaying code
examples side by side has been used in other programming
tools such as theHelpMeOut system of Hartmann et al. [83].

error with an example. If an error is detected with a datatype or
variable definition, or with the use of keywords for flow-control,
the compiler can provide a relevant example of how the language’s
features should be used. While the example is guaranteed to be
correct, this approach is pedagogically questionable in value as
there is no guarantee that the programmer can relate the generic
example to their erroneous code or has the knowledge to make
sense of the example(s) provided.

Showing example code as part of the environment feedback
was used by Denny et al. in their evaluation of an error message
enhancement tool [50]. Upon detecting the type of error made by
the student, the tool showed a similar incorrect example alongside
an example showing the correct code, both accompanied by an
explanation (see Figure 9). Example code was also displayed in the
HelpMeOut system by Hartmann et al. [83]. HelpMeOut tracked
code states from those with errors to those that were resolved, and
provided these to users at compile time and run time.

Providing examples of similar errors is one of the more empir-
ically validated guidelines. Multiple studies show that students
perceive examples as helpful [154, 199, 207]. Other studies show
that including examples yields significant benefits to problem com-
pletion and program understanding [110, 159].

However, Prather et al. conducted an empirical study on enhanc-
ing error messages, and one of the enhancements was showing
example code [163]. They noted that showing novices example
code only tended to confuse them. In their study, novices thought
that the example code was their code and spent time looking for the
example code in their code files. More work is necessary to validate
this guideline as it currently has conflicting empirical evidence.

8.6 Show Solutions or Hints
Several authors assert that software tools should not merely report
errors, but offer suggested solutions as to how they can be corrected.
Such solutions need to be considered as suggestions and not as
definitive advice, as the software tool cannot know the actual intent

of the programmer (see Figure 10). The boundary between examples
(discussed in Subsection 8.5) and solutions or hints is also not clearly
defined and the user would need to know exactly which of these
the provided information is.

Horning advocated for suggesting corrections in 1976 [90]. By
1986, Kantorowitz & Laor [100, p628] suggested that “A message
that proposes how to correct an encountered error is most useful,
but is only produced when there is a high degree of certainty for its
correctness”. Since that time, many other authors have advocated
for providing solutions [89, 202] while others have warned against
“leading a user down the wrong path...” [133, p3]. Some studies
have shown solutions to be effective when used in high certainty
situations [159, 174]. However, these studies mix solutions with
other error message enhancements, so it is impossible to distinguish
the impact of solutions on their own.

Kummerfeld & Kay [110] describe a software tool that suggests
solutions to correct identified errors. A few lines of the original
source code containing the error are displayed, with the identified
error appearing in red text. A single suggested correction for the
error appears alongside using vertical alignment and green text to
identify the error and its corresponding suggested solution. They
found that this guidance allowed novice programmers to repair
errors approximately as fast as their more experienced counterparts.

Recent work by Thiselton & Treude [199] reports on a novel
technique to augment identified Python error messages with formal
Python documentation and crowd-sourced solutions to problems
posted on the internet forum, Stack Overflow. Stack Overflow is
employed by novice and experienced programmers alike. Questions
about the meaning of programming error messages are frequently
posted, and readers vote on the validity and helpfulness of the
replies. The most popular responses percolate to the top of the
list of replies. The forum offers extensive indexing and searching
features, and esoteric questions and solutions, including just error
numbers or hexadecimal memory addresses, can often be located.

Thiselton & Treude developed two software tools, one to aug-
ment errors with formal documentation providing examples of the
correct use of a Python feature, and one providing suggested so-
lutions to identify errors using highly ranked responses on Stack
Overflow [199]. This makes clear the border between examples and
suggested solutions we discussed at the beginning of this subsec-
tion. Evaluation of these tools was undertaken by 16 participants
who encountered 115 Python syntax errors. The majority of par-
ticipants agreed that summaries of responses from Stack Overflow,
offering concrete suggestions for fixes and example code, were
more helpful than the official Python documentation. When asked
about the quality of the help providing details from formal Python
documentation, one participant said It’s a bit too long, while another
stated that the assistance was too generic and did not tell me what
I should be doing. The relatively low number of participants and
errors provides opportunity for more robust results in the future.

8.7 Allow Dynamic Interaction
Several authors have advocated that programming language sys-
tems should not merely report their error messages, but engage
the programmer with some level of dynamic interaction to elicit
and provide more detail about an error. A common theme is that



Explanation
===========
A try expression should be followed by some
mechanism to handle any exceptions thrown.
Typically a catch expression follows the try and
pattern matches on any expected exceptions. For
example:

import scala.util.control.NonFatal

try {

foo()
} catch {

case NonFatal(e) => ???
}

It is also possible to follow a try immediately by
a finally – letting the exception propagate – but
still allowing for some clean up in finally:

try {

foo()
} finally {

//perform your cleanup here!
}

It is recommended to use the NonFatal extractor to
catch all exceptions as it correctly handles
transfer functions like return.

Figure 10: Programming error message generated by the
Dotty compiler (Dotty is a superset of Scala) [147]. This is
the same code that generated the error shown in Figure 7,
but with the -explain flag passed to the compiler it provides
more information and suggestions on how to fix the code.

program development environments should not provide a “one-
shot” approach to error reporting, but should perform their role
with programmers’ histories of erroneous actions, and a possible
estimation of their abilities. The success of such systems requires
repeated use by students, perhaps in closed laboratories uniquely
providing the augmented programming environment, or by using
a cloud-based environment through which every interaction and
outcome can be tracked.

Brown [36] summarises systems such as the Cornell Program
Synthesizer, which tightly integrates editing with error analysis,
and the “do what I mean” feature of Interlisp, which presents the
user with a suggestion to correct an error. Brown suggests that the
problem of poor messages may not be with the messages them-
selves; instead, he advocates for eliminating the possibility of the un-
derlying error ever occurring. Similarly, McGiver & Conway [142]
identify seven ways in which introductory programming languages
hinder their own teaching, and call for error reporting mecha-
nisms that ideally provide multiple levels of detail in error messages
through a “tell-me-more” option. In contrast, Coull & Duncan [42]
argue that a programming support tool for novice programmers
should progressively reduce the use of enhanced compiler error
messages as teaching progresses, so that students are gradually
exposed to a compiler’s true error messages.

Traver [202] discusses error messages from the perspective of hu-
man computer interaction, and states that the interface provided by
poor error messages introduces significant barriers to students. He
advocates for extensible help and environments where the knowl-
edge of the programmer is taken into account. He suggests that
compiler systems employing affective techniques, featuring emo-
tional aspects, could help a desperate programmer by reporting
recurring errors in different ways. The idea of ‘empathetic’ IDEs
was briefly revisited in 2017 [46].

Suhailan et al. [194] describe the opportunities that social net-
works and logged social discussion to provide for automated aug-
mented error reporting that may increase students’ motivation.
Watson et al. [207] report on their tool BlueFix which provides in-
creasingly detailed errormessages to students as theymakemultiple
unsuccessful attempts at correcting an error. After three attempts,
the student is presented with notes and crowd-sourced fixes demon-
strating how other students have resolved similar problems. More
recently, Thiselton & Treude [199] employed a similar approach of
reporting errors augmented with crowd-sourced fixes using con-
tributions to the Stack Overflow website. The two former studies
were discussed in more detail in Section 7.

8.8 Provide Scaffolding for User
The concept of cognitive scaffolding is to provide a structure around
which novices can place and build their knowledge [65, 131]. Even
though it only emerged in the 1990s in computing education and
has been rarely directly discussed in the literature, researchers
have been proposing related ideas since the 1960s [208]. Many
researchers discuss matching student expectations to what is pre-
sented to them in error messages, providing explanations of why
they are receiving the error message, and providing support to the
programmer as they learn key constructs and relationships. [72, 74,
214]. As previously discussed, Coull & Duncan proposed providing
robust support to a student as they learn programming and then
progressively reducing that support as the semester draws to a
close [42]. Also in 2011, Marceau et al. argued that error messages
should help students make the connection between the text of the
message and the offending code, between terminology and code
fragments, and between message and solution without explicitly
providing a solution [132, 133]. These suggestions continue the
long trajectory of arguing that error messages should provide scaf-
folding to the user without explicitly engaging cognitive learning
theories [8, 10, 11, 163, 201, 207]. Recent work by Loksa et al. [121],
Prather et al. [160–162] and Denny et al. [54] has begun engaging
literature on metacognition in novice programming, of which one
core element is to provide scaffolding through the entire learning
process including when dealing with error messages. Very little
research has been conducted on scaffolding the programmer while
reading error messages that explicitly engages learning theory and
remains one area that is wide open for further work.

Contrary to this idea is the very recent work of McCall & Kölling
who argue that it is impossible to know what kind of misconception
by the novice programmer caused the error and it is therefore
imperative that the error message returned to the user remain
imprecise and broad [140]. This appears to be the best argument
against scaffolding and instead for concise, general error message



reporting. McCall & Kölling call into question some of the basic
assumptions made by previous researchers and further empirical
validation of scaffolding in programming error messages seems
warranted.

8.9 Use Logical Argumentation
A very recent development in the study of programming error mes-
sages is a focus on using correct logical argumentation [9, 10]. Barik
argues that error messages should be viewed through the lens of
‘rational reconstructions’ making concrete claims and providing
sufficient warrants for those claims in order to be properly under-
stood by the reader. Although Barik is the only author to propose
this in the 50+ year history of the study of programming error
messages, it is an important new development and represents an
area needing replication and extension to continue this thread of
research.

8.10 Report Errors at the Right Time
Finally, another recent development in the research on program-
ming error messages is the idea that they should be presented to
the user at the right time. Writers from the 1960s and 1970s often
brought up this issue because one needed to see as many errors as
possible when running a FORTRAN program took hours and not
minutes or seconds (or less). It would have been impossible to debug
a program in a reasonable amount of time if only one error was
presented to the user at a time. This concern faded during the 1980s
and 1990s as personal computers became ubiquitous. However, as
computers and development environments increased in power, this
once again became a concern. In the 2000s, researchers discussed
the question of when to provide certain types of error messages
(e.g. syntax or semantic) to the user [69, 72]. Recent work argues
that programming error generation should use static analysis tools
to show users error messages as soon as possible [159, 178]. This
often appears in modern development tools as the "red squiggle" –
a red underline that appears below problematic pieces or lines of
code – but can take other forms as well. This trend follows Barik’s
idea that guidelines in the literature tend to run in tandem with
shifts in industry tools [9].

9 CONCLUSIONS
We conclude by presenting the essential insights from each of
Sections 4-8 before discussing future research directions.

9.1 Insights from Literature Search
One of the primary contributions of this work is the development
of a comprehensive corpus of the literature on programming er-
ror messages. This corpus consists of 307 papers resulting from
the combination of two sources. The first, a manually curated cor-
pus crafted over 7 years, including articles that are unpublished,
out-of-print, or not available online. The second, generated from a
quasi-systematic, repeatable search of the literature. The final cor-
pus bibtex file is available online17 and remains a work in progress,
being updated on an ongoing basis. no Articles in the corpus date
back to the 1960s, yet most are recent with more than half being

17https://iticse19-wg10.github.io/

published in 2011 or later, reflecting a strong interest in program-
ming error messages. We find that many of the articles are related
to the idea of message enhancement, which is a topic of interest for
both the education, human computer interaction, and programming
language communities.

9.2 Educational Insights
One of our most striking observations was that there was relatively
little literature on the effect of programming error messages on
students and their learning. Only 43 (14%) of the papers in our
corpus were tagged with ‘pedagogy’. Perhaps more telling is that
37 of these were collected manually as part of our ‘original’ corpus
(which was curated in a much more ad hoc manner) compared
to our quasi-systematic search which uncovered 19 (13 of these
appeared in both sources).

9.3 Technical Insights
Implementing effective error messages in a compiler or interpreter
is subject to many technical challenges, both theoretical and prac-
tical. Detecting erroneous program behaviour is an undecidable
problem, so an error-detection system must choose between reject-
ing programs that would run correctly (false positives), or failing
to detect some errors (false negatives). Then if an error is detected,
it may be detected far from its source, making it challenging for
a compiler to identify the actual location in code that generated
the error. Programming systems that make use of code transforma-
tions also pose a problem; if an error is detected in the transformed
code, it needs to be mapped back to the original, pre-transformed
code, but the information to do so may no longer be available. In
general, improving error detection and reporting is an engineering
challenge that requires dedicated resources, and most compiler-
development teams prioritise adding features over improving error
diagnostics. Finally, live-compilation environments must deal with
incomplete programs, while compilers are designed to work with
the full source code of a program or module.

There is active research to improve programming error messages
in both the programming language and computing education com-
munities. We believe there is potential for both communities, along
with experts in human computer interaction and machine learning,
to collaborate on exploring new techniques and incorporating them
into production systems, improving the programming experience
for novice and expert programmers alike.

9.4 Insights from Enhancement
The area of programming error message enhancement, based on
our corpus, spans the entire history of programming error messages
in the academic literature. The efforts made in this area, apparently
quite sporadic and sparse, are considerable when one looks at more
than 50 years of research. There are two things that stand out in
this body of work when taken as a whole:

• Efforts to improve programming error messages are signif-
icant, and this is perhaps the largest conspicuous piece of
evidence for the fact that in general, programming error
messages are largely ineffective; and

• There has been little progress in more than 50 years. Despite
new languages, data collection possibilities, and increased

https://iticse19-wg10.github.io/


interest of late, there are remarkable similarities between
the motivating claims and research outputs for studies that
span half of a century, and little consensus on what the best
way forward is today.

Although here we discuss programming error messages specifically,
our conclusions are reminiscent of observations by Jadud in 2006
when discussing programming environments more generally: “De-
spite massive increases in the computational power casually avail-
able to instructors and students, the tools used to write and compile
programs have changed minimally in the last fifty years” [98, p7].

It is most likely that significant progress will not bemadewithout
larger-scale, concerted efforts and in particular, replication studies.
Most importantly these efforts will need to span multiple academic
communities including Computing Education, Programming Lan-
guages, and Human Computer Interaction. This would be a very
interesting and possibly quite impactful area for collaboration be-
tween SIGCSE, SIGPLAN, and SIGCHI.

It is possible that other advances will in effect solve the issues
that enhancement efforts have been trying to solve for decades.
To name a few there are: automatic hint-generating systems that
show promise; advances in machine learning techniques that iden-
tify/correct errors often completely bypassing the traditional text-
basedmessages; advances in programming environment technology
(background compilation, highlighting, etc.) that sometimes alle-
viate (but also sometimes add to) the problem; and data mining,
crowd sourcing and other data-driven approaches to doing what
programming error messages are supposed to do – help resolve
errors in code effectively.

If anything, the history of compiler error enhancement reaffirms
one thing – humans are still best at some tasks, and fixing pro-
gramming errors by interpreting and acting on programming error
messages seems to be one of those tasks even with little or poor
help. It would be good however, if the systems we work with made
things easier on the humans. Generating more effective program-
ming error messages would be a big step in that direction.

9.5 Insights from Guidelines
Guidelines for authoring programming error messages are scattered
throughout the literature with sparse agreement on what consti-
tutes an effective programming error message. Dozens of papers
appearing before the year 2000 discuss issues with programming
error messages, but either do not provide guidelines or list them
anecdotally. This trend has begun to reverse in recent years, with
many publications providing empirical evidence for guidelines, but
this evidence is often weak, not robust, and not repeatable. The
field is also continuing to evolve as technologies change. Guidelines
relevant to the limitations of punch cards or terminals are no longer
applicable in the age of personal computing. Some 13 years ago
Jadud had already declared that modern development environments
had taken the “rapid compilation cycle” to its “natural limit” [98,
p8].

We continue to see theories new to computer science education
applied to programming error messages, such as Cognitive Load
Theory, advancing the state-of-the-art in exciting ways. This work-
ing group created a compendium of all of the recommendations in
one usable format (see Tables 2 and 3). These tables provide the

research community with a master list of effective programming
error message design. We collected and organised the guidelines
from the literature into useful groupings; the first time these guide-
lines have been gathered in one place. There is, however, still a
need for empirical validation of our list.

9.6 Call for Research
9.6.1 Readability. As discussed in Section 8.1, there is agreement
among authors that readability is an important aspect of a good
programming error message. Readability of natural language has
been defined in various ways and is well-studied [44, 58, 73, 82, 136].
As far as we know these definitions have not been specifically ap-
plied to programming error messages, and metrics for evaluating
readability of error messages still need to be formally defined. The
impact of readability on programmers remains to be evaluated in iso-
lation, independently from other improvements to error messages.
It is arguable that enhancement efforts will not be as impactful as
they could be, if basics such as readability are not well-researched.

9.6.2 Guidelines. Many guidelines for creating error messages
exist and some appear to be widely accepted. However there is very
little empirical evidence that supports either a particular guideline
or a related pedagogic practice. Individual guidelines should be
examined and then robustly tested to determine their effectiveness.

9.6.3 Message Identifiers. Historically, many compilers have as-
sociated unique identifiers with each error message, allowing the
error to be looked up in a paper manual or on a website. Microsoft’s
Visual Studio compiler includes message identifiers, and its support
documentation provides more detail for each identifier, including
an explanation of the error, what could cause it, and suggestions
for how to fix it. Languages include C/C++18 and C#19. An open
area of research is whether or not such identifiers and external doc-
umentation facilitate programmer understanding of error messages
and reduce the time it takes to correct errors.

9.7 Moving Ahead
In conclusion the following observations are abundantly clear upon
completing this work:

(A) To-date the literature on programming error messages is
sparse and scattered, although interest has increased dramat-
ically in the last 5-10 years.

(B) Programming error messages are problematic, regardless
of language, particularly for students. They have been for
over 50 years, and progress has been slow. They are likely
to remain problematic for some time.

(C) Programming error messages are pedagogically important,
particularly in their roles as feedback agents. This is unlikely
to change for some time.

(D) Programming error messages are technically difficult to per-
fect ab initio. This is unlikely to be resolved soon. This has
resulted in several different approaches to engineering them

18https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/c-cpp-
build-errors?view=vs-2019
19https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-
messages/

https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/c-cpp-build-errors?view=vs-2019
https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/c-cpp-build-errors?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/


post hoc or eliminating them through other means. These
have met limited success.

(E) While there have been many guidelines for programming er-
ror message design proposed and implemented, no coherent
picture has emerged to answer even simple questions such
as:What does a good programming error message look like?

With a view to moving forward, we can state the following require-
ments for progress:

(a) In addition to research leveraging the latest developments
in programming language design, and technologies such as
machine learning, research at basic human computer inter-
action levels – such as how to measure the readability of
programming error messages – is needed.

(b) More attention and effort is required so that research in
this area does not continue the way it has for more than
half of a century – largely in isolated groups. Only through
collaborative efforts such as this, do we have the best chance
to come to consensus on the best way forward.

The contributions of this working group are:

(1) The development of a comprehensive corpus of the literature
on programming error messages.

(2) A compendium of programming error message design guide-
lines in one usable format.

(3) A bibtex bibliography of our combined corpus.20

We believe that contributions (1) and (2) will help the community
move towards meeting requirements (a) and (b) with a view to
changing (A) - (E). As our final conclusion we would like to state:

Programming error messages are important but prob-
lematic, and have been for over half of a century.
Without a more coordinated effort this is unlikely
to change. Currently there is not even an agreed way
to measure the effectiveness of programming error
messages, effectively.

9.8 Afterword
If you’ve read this far, you know that we consider programming
error messages to be serious, as they have genuine consequences,
particularly for learners. Nonetheless it is important to look on the
bright side sometimes, as shown in Figure 11.

ACKNOWLEDGMENTS
We would like to thank the following people for their help: Cather-
ine Mooney for the initial scripting for our bibtex and tags and for
her helpful comments; Heidi Nobles for her help with academic
archaeology; Titus Barik for helpful suggestions, discussions, and
permission to use his figure; and Amanpreet Kapoor, the ITiCSE
doctoral consortium student who visited our working group and
had excellent insight.

20https://iticse19-wg10.github.io/

Figure 11: To err is human; to generate effective text-
based programming error messages, divine. Image: From
xkcd.com/2200/ ©Randall Munroe xkcd.com/license.html
cbn

REFERENCES
[1] Alireza Ahadi, Arto Hellas, Petri Ihantola, Ari Korhonen, and Andrew Petersen.

2016. Replication in Computing Education Research: Researcher Attitudes and
Experiences. In Proceedings of the 16th Koli Calling International Conference on
Computing Education Research (Koli Calling ’16). ACM, New York, NY, USA, 2–11.
https://doi.org/10.1145/2999541.2999554

[2] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An Analysis of
Patterns of Debugging Among Novice Computer Science Students. In Proceedings
of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’05). ACM, New York, NY, USA, 84–88. https://doi.org/
10.1145/1067445.1067472

[3] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit
Gulwani. 2018. Compilation Error Repair: For the Student Programs, from the
Student Programs. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET ’18). ACM,
New York, NY, USA, 78–87. https://doi.org/10.1145/3183377.3183383

[4] Umair Z. Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare.
2019. Targeted Example Generation for Compilation Errors. In Proceedings of the
34th ACM/IEEE International Conference on Automated Software Engineering (ASE
’19). ACM, New York, NY, USA, 12.

[5] Amjad Altadmri, Michael Kolling, and Neil C. C. Brown. 2016. The Cost of Syntax
and How to Avoid It: Text versus Frame-Based Editing. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC ’16). IEEE, 748–753.
https://doi.org/10.1109/COMPSAC.2016.204

[6] Paul Ayres and John Sweller. 1990. Locus of Difficulty in Multistage Mathematics
Problems. The American Journal of Psychology 103, 2 (1990), 167–193. http:
//www.jstor.org/stable/1423141

[7] Paul L. Ayres. 2001. Systematic Mathematical Errors and Cognitive Load. Con-
temporary Educational Psychology 26, 2 (2001), 227 – 248. https://doi.org/10.1006/
ceps.2000.1051

[8] Titus Barik. 2016. How Should Static Analysis Tools Explain Anomalies to De-
velopers? A Communication Theory of Computationally Supporting Developer
Self-Explanations for Static Analysis Anomalies. (2016). http://static.barik.net/
barik/proposal/barik_proposal_approved.pdf

[9] Titus Barik. 2018. Error Messages as Rational Reconstructions. Ph.D. Dissertation.
North Carolina State University, Raleigh. https://repository.lib.ncsu.edu/handle/
1840.20/35439

https://iticse19-wg10.github.io/
https://www.xkcd.com/2200/
https://www.xkcd.com/license.html
https://doi.org/10.1145/2999541.2999554
https://doi.org/10.1145/1067445.1067472
https://doi.org/10.1145/1067445.1067472
https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1109/COMPSAC.2016.204
http://www.jstor.org/stable/1423141
http://www.jstor.org/stable/1423141
https://doi.org/10.1006/ceps.2000.1051
https://doi.org/10.1006/ceps.2000.1051
http://static.barik.net/barik/proposal/barik_proposal_approved.pdf
http://static.barik.net/barik/proposal/barik_proposal_approved.pdf
https://repository.lib.ncsu.edu/handle/1840.20/35439
https://repository.lib.ncsu.edu/handle/1840.20/35439


[10] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How
Should Compilers Explain Problems to Developers?. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2018). ACM, New York, NY,
USA, 633–643. https://doi.org/10.1145/3236024.3236040

[11] Titus Barik, Kevin Lubick, Samuel Christie, and Emerson Murphy-Hill. 2014.
How Developers Visualize Compiler Messages: A Foundational Approach to
Notification Construction. In 2014 Second IEEE Working Conference on Software
Visualization. IEEE, 87–96. https://doi.org/10.1109/VISSOFT.2014.24

[12] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler
Error Messages?. In Proceedings of the 39th International Conference on Soft-
ware Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 575–585. https:
//doi.org/10.1109/ICSE.2017.59

[13] D. W. Barron. 1975. A Note on APL. Comput. J. 19, 1 (1975), 93. https://academic.
oup.com/comjnl/article-pdf/19/1/93/1058172/190093.pdf

[14] Brett A. Becker. 2015. An Exploration Of The Effects Of Enhanced Compiler Error
Messages For Computer Programming Novices. Masters Thesis. Dublin Institute of
Technology. https://doi.org/10.13140/RG.2.2.26637.13288

[15] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error
Messages. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, NY, USA, 126–131. https://doi.
org/10.1145/2839509.2844584

[16] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for
Novice Programmers. In Proceedings of the 21st ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’16). ACM, New York, NY,
USA, 296–301. https://doi.org/10.1145/2899415.2899463

[17] Brett A. Becker. 2019. Parlez-vous Java? Bonjour La Monde != Hello World:
Barriers to Programming Language Acquisition for Non-Native English Speak-
ers. In Proceedings of the 30th Annual Conference of the Psychology of Pro-
gramming Interest Group (PPIG ’19). http://www.ppig.org/sites/ppig.org/files/
2019-PPIG-30th-becker.pdf

[18] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Effective Compiler Error Message Enhance-
ment for Novice Programming Students. Computer Science Education 26, 2-3
(2016), 148–175. https://doi.org/10.1080/08993408.2016.1225464

[19] Brett A. Becker, Kyle Goslin, and GrahamGlanville. 2018. The Effects of Enhanced
Compiler Error Messages on a Syntax Error Debugging Test. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18).
ACM, New York, NY, USA, 640–645. https://doi.org/10.1145/3159450.3159461

[20] Brett A. Becker and Catherine Mooney. 2016. Categorizing Compiler Error
Messages with Principal Component Analysis. In Proceedings of the 12th China-
Europe International Symposium on Software Engineering Education (CEISEE ’16).
Shenyang, China, 1–8. https://researchrepository.ucd.ie/handle/10197/7889

[21] Brett A. Becker, CormacMurray, Tianyi Tao, Changheng Song, Robert McCartney,
and Kate Sanders. 2018. Fix the First, Ignore the Rest: Dealing with Multiple
Compiler Error Messages. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (SIGCSE ’18). ACM, New York, NY, USA, 634–639.
https://doi.org/10.1145/3159450.3159453

[22] Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Review of
the Evolution of Introductory Programming Education Research. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM, New York, NY, USA, 338–344. https://doi.org/10.1145/3287324.3287432

[23] T.R. Beelders and Jean-Pierre L. du Plessis. 2016. The Influence of Syntax High-
lighting on Reading and Comprehending Code. Journal of Eye Movement Research
Beelders 91, 1 (2016), 1–11. https://doi.org/10.16910/jemr.9.1.1

[24] Mordechai (Moti) Ben-Ari. 2007. Compile and Runtime Errors in Java.
(2007). http://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/
uploads/softwareAndLearningMaterials/errors.pdf

[25] Joe Bergin, Achla Agarwal, and Krishna Agarwal. 2003. Some Deficiencies
of C++ in Teaching CS1 and CS2. ACM SIGPLAN Notices 38, 6 (2003), 9–13.
https://doi.org/10.1145/885638.885642

[26] Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors
in Programming Assignments using Recurrent Neural Networks. In 2nd Indian
Workshop on Machine Learning (IWML ’16). https://www2.cse.iitk.ac.in/~iwml/
2016/papers/iWML_2016_paper_5.pdf

[27] Michael W. Bigrigg, Russell Bortz, Shyamal Chandra, David Reed, Jared Sheehan,
and Sara Smith. 2003. An Evaluation of the Usefulness of Compiler Error Messages.
Technical Report. http://www.ices.cmu.edu/reports/040903.pdf

[28] Dennis Bouvier, Ellie Lovellette, John Matta, Bedour Alshaigy, Brett A. Becker,
Michelle Craig, Jana Jackova, Robert McCartney, Kate Sanders, and Mark Zarb.
2016. Novice Programmers and the Problem Description Effect. In Proceedings of
the 2016 ITiCSE Working Group Reports (ITiCSE-WGR ’16). ACM, New York, NY,
USA, 103–118. https://doi.org/10.1145/3024906.3024912

[29] Bernd Braßel. 2004. Typehope: There is Hope for Your Type Errors. In Int.
Workshop on Implementation of Functional Languages.

[30] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mo-
hamed Khalil. 2007. Lessons from Applying the Systematic Literature Review

Process Within the Software Engineering Domain. J. Syst. Softw. 80, 4 (April
2007), 571–583. https://doi.org/10.1016/j.jss.2006.07.009

[31] Neil C. C. Brown and Amjad Altadmri. 2017. Novice Java Programming Mistakes:
Large-Scale Data vs. Educator Beliefs. ACM Transactions on Computing Education
17, 2, Article 7 (May 2017), 21 pages. https://doi.org/10.1145/2994154

[32] Neil C. C. Brown, Amjad Altadmri, Sue Sentance, and Michael Kölling. 2018.
Blackbox, Five Years On. In Proceedings of the 2018 ACM Conference on Interna-
tional Computing Education Research - ICER ’18. ACM, Espoo, Finland, 196–204.
https://doi.org/10.1145/3230977.3230991

[33] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14).
ACM, New York, NY, USA, 223–228. https://doi.org/10.1145/2538862.2538924

[34] Neil C. C. Brown and Greg Wilson. 2018. Ten Quick Tips For Teaching Pro-
gramming. PLoS Computational Biology 14, 4 (Apr 2018), e1006023. https:
//doi.org/10.1371/journal.pcbi.1006023

[35] P. J. Brown. 1982. My System Gives Excellent Error Messages - Or Does It?
Software: Practice and Experience 12, 1 (Jan 1982), 91–94. https://doi.org/10.1002/
spe.4380120110

[36] P. J. Brown. 1983. Error Messages: The Neglected Area of the Man/Machine
Interface. Commun. ACM 26, 4 (Apr 1983), 246–249. https://doi.org/10.1145/2163.
358083

[37] Andrew Buxton and Lesley Trenner. 1987. An Experiment to Assess the Friend-
liness of Error Messages from Interactive Information Retrieval Systems. Jour-
nal of Information Science 13, 4 (Aug 1987), 197–209. https://doi.org/10.1177/
016555158701300403

[38] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The
Normalized Programming State Model: Predicting Student Performance in Com-
puting Courses Based on Programming Behavior. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research
(ICER ’15). ACM, New York, NY, USA, 141–150. https://doi.org/10.1145/2787622.
2787710

[39] A. T. Chamillard and William C. Hobart, Jr. 1997. Transitioning to Ada in an
Introductory Course for Non-majors. In Proceedings of the Conference on TRI-Ada
(TRI-Ada ’97). ACM, New York, NY, USA, 37–40. https://doi.org/10.1145/269629.
269634

[40] G. V. Cormack. 1989. An LR Substring Parser for Noncorrecting Syntax Error
Recovery. In Proceedings of the ACM SIGPLAN 1989 Conference on Programming
Language Design and Implementation (PLDI ’89). ACM, New York, NY, USA,
161–169. https://doi.org/10.1145/73141.74832

[41] Natalie J Coull. 2008. SNOOPIE: Development of a Learning Support Tool for Novice
Programmers within a Conceptual Framework. Ph.D. Dissertation. University of
St Andrews, St Andrews, Scotland. http://hdl.handle.net/10023/522

[42] Natalie J. Coull and Ishbel M.M. Duncan. 2011. Emergent Requirements for
Supporting Introductory Programming. Innovations in Teaching and Learning in
Information and Computer Sciences (ITaLICS) 10, 1 (2011), 78–85. https://doi.org/
10.11120/ital.2011.10010078

[43] Paul Cress, Paul Dirksen, andWesley J Graham. 1970. FORTRAN IVWithWATFOR
and WATFIV. Prentice-Hall, Englewood Cliffs, New Jersey.

[44] Edgar Dale and Jeanne S Chall. 1949. The Concept of Readability. Elementary
English 26, 1 (1949), 19–26.

[45] E A Davis, M C Linn, and M Clancy. 1995. Learning to Use Parentheses and
Quotes in LISP. Computer Science Education 6, 1 (1995), 15–31. https://doi.org/10.
1080/0899340950060102

[46] Carla De Lira. 2017. Improving the Learning Experiences of First-Year Computer
Science Students with Empathetic IDEs. In Proceedings of the 2017 ACMConference
on International Computing Education Research (ICER ’17). ACM, New York, NY,
USA, 293–294. https://doi.org/10.1145/3105726.3105742

[47] Morris Dean. 1982. How a Computer Should Talk To People. IBM Systems Journal
21, 4 (1982), 424–453. https://doi.org/10.1147/sj.214.0424

[48] Paul Denny, Brett A. Becker, Michelle Craig, Greg Wilson, and Piotr Ba-
naszkiewicz. 2019. Research This! Questions That Computing Educators Most
Want Computing Education Researchers to Answer. In Proceedings of the 2019
ACM Conference on International Computing Education Research (ICER ’19). ACM,
New York, NY, USA, 259–267. https://doi.org/10.1145/3291279.3339402

[49] Paul Denny, Brian Hanks, and Beth Simon. 2010. PeerWise: Replication Study of
a Student-collaborative Self-testing Web Service in a U.S. Setting. In Proceedings
of the 41st ACM Technical Symposium on Computer Science Education (SIGCSE ’10).
ACM, New York, NY, USA, 421–425. https://doi.org/10.1145/1734263.1734407

[50] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing Syntax
Error Messages Appears Ineffectual. In Proceedings of the 19th Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’14). ACM, New
York, NY, USA, 273–278. https://doi.org/10.1145/2591708.2591748

[51] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors
Are Not Equal. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’12). ACM, New York, NY,
USA, 75–80. https://doi.org/10.1145/2325296.2325318

https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1109/VISSOFT.2014.24
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1109/ICSE.2017.59
https://academic.oup.com/comjnl/article-pdf/19/1/93/1058172/190093.pdf
https://academic.oup.com/comjnl/article-pdf/19/1/93/1058172/190093.pdf
https://doi.org/10.13140/RG.2.2.26637.13288
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2899415.2899463
http://www.ppig.org/sites/ppig.org/files/2019-PPIG-30th-becker.pdf
http://www.ppig.org/sites/ppig.org/files/2019-PPIG-30th-becker.pdf
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3159450.3159461
https://researchrepository.ucd.ie/handle/10197/7889
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.16910/jemr.9.1.1
http://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/errors.pdf
http://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/errors.pdf
https://doi.org/10.1145/885638.885642
https://www2.cse.iitk.ac.in/~iwml/2016/papers/iWML_2016_paper_5.pdf
https://www2.cse.iitk.ac.in/~iwml/2016/papers/iWML_2016_paper_5.pdf
http://www.ices.cmu.edu/reports/040903.pdf
https://doi.org/10.1145/3024906.3024912
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/2994154
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.1002/spe.4380120110
https://doi.org/10.1002/spe.4380120110
https://doi.org/10.1145/2163.358083
https://doi.org/10.1145/2163.358083
https://doi.org/10.1177/016555158701300403
https://doi.org/10.1177/016555158701300403
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1145/269629.269634
https://doi.org/10.1145/269629.269634
https://doi.org/10.1145/73141.74832
http://hdl.handle.net/10023/522
https://doi.org/10.11120/ital.2011.10010078
https://doi.org/10.11120/ital.2011.10010078
https://doi.org/10.1080/0899340950060102
https://doi.org/10.1080/0899340950060102
https://doi.org/10.1145/3105726.3105742
https://doi.org/10.1147/sj.214.0424
https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/1734263.1734407
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2325296.2325318


[52] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-driven Practice of Java. In Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education (SIGCSE ’11). ACM,
New York, NY, USA, 471–476. https://doi.org/10.1145/1953163.1953299

[53] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the Syntax Barrier for Novices. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’11). ACM, New York, NY, USA, 208–212. https://doi.org/10.1145/1999747.
1999807

[54] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and
Raymond Pettit. 2019. A Closer Look at Metacognitive Scaffolding: Solving Test
Cases Before Programming. In Proceedings of the 19th Koli Calling International
Conference on Computing Education Research (Koli Calling ’19). ACM, New York,
NY, USA. https://doi.org/10.1145/3364510.3366170

[55] Gergely Dévai, Dániel Leskó, and Máté Tejfel. 2013. The EDSL’s Struggle for
Their Sources. In: Zsók V., Horváth Z., Csató L. (eds) Central European Functional
Programming School. CEFP 2013. Lecture Notes in Computer Science, Vol. 8606.
Springer, Cham. 300–335 pages. https://doi.org/10.1007/978-3-319-15940-9_7

[56] Tao Dong and Kandarp Khandwala. 2019. The Impact of "Cosmetic" Changes on
the Usability of Error Messages. In Extended Abstracts of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–6. https://doi.org/10.1145/3290607.
3312978

[57] Benedict du Boulay and Ian Matthew. 1984. Fatal Error in Pass Zero: How Not
to Confuse Novices. Behaviour and Information Technology 3, 2 (1984), 109–118.
https://doi.org/10.1080/01449298408901742

[58] William H DuBay. 2007. Smart Language: Readers, Readability, and the Grading
of Text. ERIC.

[59] Thomas Dy and Ma. Mercedes Rodrigo. 2010. A Detector for Non-literal Java
Errors. In Proceedings of the 10th Koli Calling International Conference on Com-
puting Education Research (Koli Calling ’10). ACM, New York, NY, USA, 118–122.
https://doi.org/10.1145/1930464.1930485

[60] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle
and José Nelson Amaral. 2018. Syntax and Sensibility: Using Language Models to
Detect and Correct Syntax Errors. 311–322 pages.

[61] Marc Eisenstadt and Matthew W. Lewis. 2018. Errors in an Interactive Program-
ming Environment: Causes and Cures. In Novice Programming Environments,
Mark Eisenstadt, Mark T. Keane, and Tim Rajan (Eds.). Routledge, London, Chap-
ter 5, 111–131.

[62] Nabil El Boustani and Jurriaan Hage. 2010. Corrective Hints for Type Incorrect
Generic Java Programs. In Proceedings of the 2010 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation (PEPM ’10). ACM, New York, NY,
USA, 5–14. https://doi.org/10.1145/1706356.1706360

[63] Nabil El Boustani and Jurriaan Hage. 2011. Improving Type Error Messages for
Generic Java. In Higher-Order and Symbolic Computation, Vol. 24. Savannah, GA,
3–39. https://doi.org/10.1007/s10990-011-9070-3

[64] U. Engelmann and H. P. Meinzer. 1985. Rules for the Design of End User Lan-
guages. In Medical Informatics Europe 85, F. H. Roger, P. Grönroos, R. Tervo-
Pellikka, and R. O’Moore (Eds.). Springer, Berlin, Heidelberg, Helsinki, Finland,
240–245. https://doi.org/10.1007/978-3-642-93295-3_48

[65] Anneli Eteläpelto. 1993. Metacognition and the Expertise of Computer Program
Comprehension. Scandinavian Journal of Educational Research 37, 3 (1993), 243–
254. https://doi.org/10.1080/0031383930370305

[66] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common Logic
Errors Made by Novice Programmers. In Proceedings of the 20th Australasian
Computing Education Conference (ACE ’18). ACM, New York, NY, USA, 83–89.
https://doi.org/10.1145/3160489.3160493

[67] Georgios Evangelidis, Vassilios Dagdilelis, Maria Satratzemi, and Vassilios Efopou-
los. 2001. X-compiler: Yet Another Integrated Novice Programming Environment.
In Proceedings IEEE International Conference on Advanced Learning Technologies.
IEEE Comput. Soc, 166–169. https://doi.org/10.1109/ICALT.2001.943890

[68] S. Fincher. 1999. What are we doing when we teach programming?. In FIE’99
Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing
the Future of Science and Engineering Education. Conference Proceedings (IEEE
Cat. No.99CH37011, Vol. 1. 12A4/1–12A4/5 vol.1. https://doi.org/10.1109/FIE.1999.
839268

[69] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. 2002. DrScheme: A Pro-
gramming Environment for Scheme. Journal of Functional Programming 12, 2
(March 2002), 159–182. https://doi.org/10.1017/S0956796801004208

[70] Allan Fisher and Jane Margolis. 2002. Unlocking the Clubhouse: The Carnegie
Mellon Experience. SIGCSE Bull. 34, 2 (June 2002), 79–83. https://doi.org/10.1145/
543812.543836

[71] Julie Fisher. 1999. The Importance of User Message Text and Why Professional
Writers Should Be Involved. Australian Computer Journal 31 (Nov 1999), 118–123.

[72] Thomas Flowers, Curtis Carver, and James Jackson. 2004. Empowering stu-
dents and building confidence in novice programmers through gauntlet. In 34th
ASEE/IEEE Annual Frontiers in Education, 2004. FIE 2004. IEEE, Savannah, GA,
USA, T3H10–13. https://doi.org/10.1109/fie.2004.1408551

[73] Edward B Fry. 2006. Readability: Reading Hall of Fame Book. Newark. DE:
International Reading Association (2006).

[74] Richard Furuta and P. Michael Kemp. 1979. Experimental Evaluation of Pro-
gramming Language Features: Implications for Introductory Programming
Languages. In Proceedings of the 10th SIGCSE Technical Symposium on Com-
puter Science Education (SIGCSE ’79). ACM, New York, NY, USA, 18–21. https:
//doi.org/10.1145/800126.809544

[75] Susan L. Graham and Steven P. Rhodes. 1973. Practical Syntactic Error Recovery
in Compilers. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’73). ACM, New York, NY, USA,
52–58. https://doi.org/10.1145/512927.512932

[76] David Gries. 1968. Use of Transition Matrices in Compiling. Commun. ACM 11,
1 (Jan. 1968), 26–34. https://doi.org/10.1145/362851.362872

[77] David Gries. 1974. What Should We Teach in an Introductory Programming
Course?. In Proceedings of the Fourth SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’74). ACM, New York, NY, USA, 81–89. https://doi.org/
10.1145/800183.810447

[78] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17). AAAI Press,
1345–1351. http://dl.acm.org/citation.cfm?id=3298239.3298436

[79] Jurriaan Hage and Heeren Bastiaan. 2006. Heuristics for Type Error Discovery
and Recovery. In 18th International Conference on Implementation and Application
of Functional Languages (IFL ’06). 199–216. https://link.springer.com/chapter/10.
1007/978-3-540-74130-5_12

[80] Devon Harker. 2017. Examining the Effects of Enhanced Compilers on Student
Productivity. Masters Thesis. University of Northern British Columbia. https:
//unbc.arcabc.ca/islandora/object/unbc%3A58897

[81] Jan Lee Harrington. 1984. The Effect of Error Messages on Learning Computer
Programming by Individuals Without Prior Programming Experience. PhD Thesis.
Drexel University.

[82] Theodore L Harris and Richard E Hodges. 1995. The Literacy Dictionary: The
Vocabulary of Reading and Writing. ERIC.

[83] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.
What Would Other Programmers Do: Suggesting Solutions to Error Messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’10). ACM, New York, NY, USA, 1019–1028. https://doi.org/10.1145/1753326.
1753478

[84] J. Hartz, Adam. 2012. CAT-SOOP: A Tool for Automatic Collection and Assessment
of Homework Exercises. Master’s thesis. Massachusetts Institute of Technol-
ogy. https://dspace.mit.edu/bitstream/handle/1721.1/77086/825763362-MIT.pdf?
sequence=2

[85] Brian Harvey. 1982. Why Logo? Byte 7, 8 (Aug 1982), 163–195. http://cmkfutures.
com/wp-content/uploads/2017/06/Why-Logo-by-Brian-Harvey.pdf

[86] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. 2003. Scripting the
Type Inference Process. In Proceedings of the 8th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’03). ACM, New York, NY, USA,
3–13. https://doi.org/10.1145/944705.944707

[87] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003. Helium, for
Learning Haskell. In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell
(Haskell ’03). ACM, New York, NY, USA, 62–71. https://doi.org/10.1145/871895.
871902

[88] Zef Hemel, Danny M. Groenewegen, Lennart C.L. Kats, and Eelco Visser. 2011.
Static Consistency Checking of Web Applications with WebDSL. Journal of
Symbolic Computation 46, 2 (2011), 150–182. https://doi.org/10.1016/j.jsc.2010.08.
006

[89] Richard Hill. 2008. Developing a Teaching Compiler for Students Learning the C
Programming Language. Bachelor of Science Dissertation. University of Bath.

[90] James J Horning. 1976. What the Compiler Should Tell the User. In Compiler
Construction: An Advanced Course, G Goos and J Hartmanis (Eds.). Springer-
Verlag, Berlin-Heidelberg, 525–548.

[91] C. D. Hundhausen, D. M. Olivares, and A. S. Carter. 2017. IDE-Based Learning
Analytics for Computing Education: A Process Model, Critical Review, and Re-
search Agenda. ACM Transactions on Computing Education 17, 3, Article 11 (Aug.
2017), 26 pages. https://doi.org/10.1145/3105759

[92] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies. In Proceedings of the 2015
ITiCSE Working Group Reports (ITICSE-WGR ’15). ACM, New York, NY, USA,
41–63. https://doi.org/10.1145/2858796.2858798

[93] Barbara S. Isa, James M. Boyle, Alan S. Neal, and Roger M. Simons. 1983. A
Methodology for Objectively Evaluating Error Messages. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’83). ACM, New
York, NY, USA, 68–71. https://doi.org/10.1145/800045.801583

https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1007/978-3-319-15940-9_7
https://doi.org/10.1145/3290607.3312978
https://doi.org/10.1145/3290607.3312978
https://doi.org/10.1080/01449298408901742
https://doi.org/10.1145/1930464.1930485
https://doi.org/10.1145/1706356.1706360
https://doi.org/10.1007/s10990-011-9070-3
https://doi.org/10.1007/978-3-642-93295-3_48
https://doi.org/10.1080/0031383930370305
https://doi.org/10.1145/3160489.3160493
https://doi.org/10.1109/ICALT.2001.943890
https://doi.org/10.1109/FIE.1999.839268
https://doi.org/10.1109/FIE.1999.839268
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/543812.543836
https://doi.org/10.1145/543812.543836
https://doi.org/10.1109/fie.2004.1408551
https://doi.org/10.1145/800126.809544
https://doi.org/10.1145/800126.809544
https://doi.org/10.1145/512927.512932
https://doi.org/10.1145/362851.362872
https://doi.org/10.1145/800183.810447
https://doi.org/10.1145/800183.810447
http://dl.acm.org/citation.cfm?id=3298239.3298436
https://link.springer.com/chapter/10.1007/978-3-540-74130-5_12
https://link.springer.com/chapter/10.1007/978-3-540-74130-5_12
https://unbc.arcabc.ca/islandora/object/unbc%3A58897
https://unbc.arcabc.ca/islandora/object/unbc%3A58897
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/1753326.1753478
https://dspace.mit.edu/bitstream/handle/1721.1/77086/825763362-MIT.pdf?sequence=2
https://dspace.mit.edu/bitstream/handle/1721.1/77086/825763362-MIT.pdf?sequence=2
http://cmkfutures.com/wp-content/uploads/2017/06/Why-Logo-by-Brian-Harvey.pdf
http://cmkfutures.com/wp-content/uploads/2017/06/Why-Logo-by-Brian-Harvey.pdf
https://doi.org/10.1145/944705.944707
https://doi.org/10.1145/871895.871902
https://doi.org/10.1145/871895.871902
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1145/3105759
https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1145/800045.801583


[94] ISO/IEC 14882:2011 2011. Information Technology – Programming languages –
C++. Technical Report. https://www.iso.org/standard/50372.html

[95] ISO/IEC TS 19217:2015 2015. Information Technology – Programming Languages
– C++ Extensions for Concepts. Technical Report. https://www.iso.org/standard/
64031.html

[96] J. Jackson, M. Cobb, and C. Carver. 2005. Identifying Top Java Errors for Novice
Programmers. In 35th Annual Frontiers in Education Conference (FIE ’05). T4C–24
– T4C–27. https://doi.org/10.1109/fie.2005.1611967

[97] Matthew C Jadud. 2005. A First Look at Novice Compilation Behaviour Using
BlueJ. Computer Science Education 15, 1 (2005), 25–40. https://doi.org/10.1080/
08993400500056530 arXiv:https://doi.org/10.1080/08993400500056530

[98] Matthew C. Jadud. 2006. An Exploration of Novice Compilation Behaviour in BlueJ.
Ph.D. Dissertation. University of Kent at Canterbury. https://jadud.com/dl/pdf/
jadud-dissertation.pdf

[99] Mathias Johan Johansen. 2015. Errors and Misunderstandings Among Novice
Programmers Assessing the Student Not the Program. Masters Thesis. University
of Oslo. https://www.duo.uio.no/handle/10852/49045

[100] Eliezer Kantorowitz and H. Laor. 1986. Automatic Generation of Useful Syntax
Error Messages. Software: Practice and Experience 16, 7 (1986), 627–640.

[101] Ioannis Karvelas. 2019. Investigating Novice Programmers’ Interaction with
Programming Environments. In Proceedings of the 2019 ACM Conference on In-
novation and Technology in Computer Science Education (ITiCSE ’19). ACM, New
York, NY, USA, 336–337. https://doi.org/10.1145/3304221.3325596

[102] Caitlin Kelleher, Dennis Cosgrove, andDavid Culyba. 2002. Alice2: Programming
Without Syntax Errors. User Interface Software and Technology - UIST 2002 (2002),
3–4. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.4640&rep=
rep1&type=pdf

[103] B. Kitchenham and S. Charters. 2007. Guidelines for Performing Systematic
Literature Reviews in Software Engineering, version 2.3. (2007).

[104] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems Prior Research on Learning Barriers A Study of
Visual Basic . NET 2003. In Proceedings of IEEE Symposium on Visual Languages
and Human-Centric Computing (VLHCC ’04). 199–206. https://doi.org/10.1109/
VLHCC.2004.47

[105] Tobias Kohn. 2017. Teaching Python Programming to Novices: Addressing Mis-
conceptions and Creating a Development Environment. PhD Thesis. ETH Zürich.

[106] Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause of Error
Messages in Python. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 524–530.
https://doi.org/10.1145/3287324.3287381

[107] Michael Kölling. 1999. The Design of an Object-Oriented Environment and Lan-
guage for Teaching. Ph.D. Dissertation. University of Sydney. https://kar.kent.ac.
uk/21868/1/the_design_of_an_object-oriented_kolling.pdf

[108] Michael Kölling. 2015. Lessons from the Design of Three Educational Program-
ming Environments: Blue, BlueJ and Greenfoot. International Journal of People-
Oriented Programming 4, 1 (2015), 5–32. https://doi.org/10.4018/ijpop.2015010102

[109] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003. The
BlueJ System and its Pedagogy. Computer Science Education 13, 4 (Dec 2003),
249–268. https://doi.org/10.1076/csed.13.4.249.17496

[110] Sarah K. Kummerfeld and Judy Kay. 2003. The Neglected Battle Fields of Syntax
Errors. In Proceedings of the Fifth Australasian Conference on Computing Education
- Volume 20 (ACE ’03). Australian Computer Society, Inc., Darlinghurst, Australia,
Australia, 105–111. http://dl.acm.org/citation.cfm?id=858403.858416

[111] Thomas Kurtz. 1978. BASIC. ACM SIGPLAN Notices - Special issue: History of
programming languages conference 13, 8 (1978), 103–118. https://doi.org/10.1145/
960118.808376

[112] Nicolas Laurent. 2017. Red Shift: Procedural Shift-reduce Parsing (Vision Paper).
In Proceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering (SLE ’17). ACM, New York, NY, USA, 38–42. https://doi.
org/10.1145/3136014.3136036

[113] Michael J. Lee and Amy J. Ko. 2011. Personifying Programming Tool Feedback
Improves Novice Programmers’ Learning. In Proceedings of the Seventh Interna-
tional Workshop on Computing Education Research (ICER ’11). ACM, New York,
NY, USA, 109–116. https://doi.org/10.1145/2016911.2016934

[114] Oukseh Lee and Kwangkeun Yi. 1998. Proofs About a Folklore Let-polymorphic
Type Inference Algorithm. ACM Trans. Program. Lang. Syst. 20, 4 (July 1998),
707–723. https://doi.org/10.1145/291891.291892

[115] Ronald Paul Leinius. 1970. Error Detection and Recovery for Syntax Directed
Compiler Systems. Ph.D. Dissertation. AAI7024758.

[116] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. 2007.
Searching for Type-error Messages. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’07).
ACM, New York, NY, USA, 425–434. https://doi.org/10.1145/1250734.1250783

[117] Stuart Lewis and Gaius Mulley. 1998. A Comparison Between Novice and
Experienced Compiler Users in a Learning Environment. In Proceedings of the 6th
Annual Conference on the Teaching of Computing and the 3rd Annual Conference
on Integrating Technology into Computer Science Education: Changing the Delivery
of Computer Science Education (ITiCSE ’98). ACM, New York, NY, USA, 157–161.

https://doi.org/10.1145/282991.283106
[118] William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal Principles of

Design, Revised and Updated: 125 Ways to Enhance Usability, Influence Perception,
Increase Appeal, Make Better Design Decisions, and Teach through Design. Rockport
Publishers.

[119] Derrell Lipman. 2014. LearnCS! a Browser-Based Research Platform for CS1 and
Studying the Role of Instruction of Debugging from Early in the Course. Ph.D.
Dissertation. University of Massachusetts Lowell.

[120] Charles R. Litecky and Gordon B. Davis. 1976. A Study of Errors, Error-
proneness, and Error Diagnosis in Cobol. Commun. ACM 19, 1 (1976), 33–38.
https://doi.org/10.1145/359970.359991

[121] Dastyni Loksa, Amy J. Ko,Will Jernigan, AlannahOleson, Christopher J. Mendez,
and Margaret M. Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA,
1449–1461. https://doi.org/10.1145/2858036.2858252

[122] Glenn R Luecke, James Coyle, James Hoekstra, Marina Kraeva, and Ying Xu.
2009. The Importance of Run-time Error Detection. In Tools for High Performance
Computing 2009. 145–155. https://doi.org/10.1007/978-3-642-11261-4

[123] Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, Ying Xu, Eliz-
abeth Kleiman, and Olga Weiss. 2009. Evaluating Error Detection Capabilities
of UPC Run-time Systems. In Proceedings of the Third Conference on Partitioned
Global Address Space Programing Models (PGAS ’09). ACM, New York, NY, USA,
Article 7, 4 pages. https://doi.org/10.1145/1809961.1809971

[124] Harri Luoma, Essi Lahtinen, and Hannu-Matti Järvinen. 2007. CLIP, a Com-
mand Line Interpreter for a Subset of C++. In Proceedings of the Seventh Baltic
Sea Conference on Computing Education Research - Volume 88 (Koli Calling ’07).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 199–202.
http://dl.acm.org/citation.cfm?id=2449323.2449351

[125] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proceedings of the
21st ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’16). ACM, New York, NY, USA, 284–289. https://doi.org/10.1145/2899415.
2899432

[126] Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Mühling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline
Whalley. 2017. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports (ITiCSE-WGR ’17). ACM, New York, NY, USA, 47–69. https://doi.org/10.
1145/3174781.3174784

[127] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’18). ACM,
New York, NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

[128] Celeste S. Magers. 1983. An Experimental Evaluation of On-line HELP for
Non-programmers. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’83). ACM, New York, NY, USA, 277–281. https:
//doi.org/10.1145/800045.801626

[129] Qusay H. Mahmoud, Wlodek Dobosiewicz, and David Swayne. 2004. Redesign-
ing Introductory Computer Programming with HTML, JavaScript, and Java.
SIGCSE Bull. 36, 1 (March 2004), 120–124. https://doi.org/10.1145/1028174.971344

[130] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. 2010. The Scratch Programming Language and Environment. ACM
Transactions on Computing Education 10, 4, Article 16 (Nov. 2010), 15 pages.
https://doi.org/10.1145/1868358.1868363

[131] Murali Mani and Quamrul Mazumder. 2013. Incorporating Metacognition into
Learning. In Proceeding of the 44th ACM Technical Symposium on Computer Science
Education (SIGCSE ’13). ACM, New York, NY, USA, 53–58. https://doi.org/10.
1145/2445196.2445218

[132] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measuring
the Effectiveness of ErrorMessages Designed for Novice Programmers. In Proceed-
ings of the 42nd ACMTechnical Symposium on Computer Science Education (SIGCSE
’11). ACM, New York, NY, USA, 499–504. https://doi.org/10.1145/1953163.1953308

[133] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind
Your Language: On Novices’ Interactions with Error Messages. In Proceedings
of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2011). ACM, New York, NY, USA, 3–18.
https://doi.org/10.1145/2048237.2048241

[134] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. 2019.
The Impact of Adding Textual Explanations to Next-step Hints in a Novice Pro-
gramming Environment. In Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’19). ACM, New York, NY,
USA, 520–526. https://doi.org/10.1145/3304221.3319759

[135] Richard E. Mayer. 2004. Teaching of Subject Matter. Annual Review of Psychology
55, 1 (Feb 2004), 715–744. https://doi.org/10.1146/annurev.psych.55.082602.133124

[136] G Harry Mc Laughlin. 1969. SMOG Grading – A New Readability Formula.
Journal of reading 12, 8 (1969), 639–646.

https://www.iso.org/standard/50372.html
https://www.iso.org/standard/64031.html
https://www.iso.org/standard/64031.html
https://doi.org/10.1109/fie.2005.1611967
https://doi.org/10.1080/08993400500056530
https://doi.org/10.1080/08993400500056530
http://arxiv.org/abs/https://doi.org/10.1080/08993400500056530
https://jadud.com/dl/pdf/jadud-dissertation.pdf
https://jadud.com/dl/pdf/jadud-dissertation.pdf
https://www.duo.uio.no/handle/10852/49045
https://doi.org/10.1145/3304221.3325596
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.4640&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.4640&rep=rep1&type=pdf
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/3287324.3287381
https://kar.kent.ac.uk/21868/1/the_design_of_an_object-oriented_kolling.pdf
https://kar.kent.ac.uk/21868/1/the_design_of_an_object-oriented_kolling.pdf
https://doi.org/10.4018/ijpop.2015010102
https://doi.org/10.1076/csed.13.4.249.17496
http://dl.acm.org/citation.cfm?id=858403.858416
https://doi.org/10.1145/960118.808376
https://doi.org/10.1145/960118.808376
https://doi.org/10.1145/3136014.3136036
https://doi.org/10.1145/3136014.3136036
https://doi.org/10.1145/2016911.2016934
https://doi.org/10.1145/291891.291892
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/282991.283106
https://doi.org/10.1145/359970.359991
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1007/978-3-642-11261-4
https://doi.org/10.1145/1809961.1809971
http://dl.acm.org/citation.cfm?id=2449323.2449351
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/800045.801626
https://doi.org/10.1145/800045.801626
https://doi.org/10.1145/1028174.971344
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/2445196.2445218
https://doi.org/10.1145/2445196.2445218
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/3304221.3319759
https://doi.org/10.1146/annurev.psych.55.082602.133124


[137] Bruce J. McAdam. 1998. On the Unification of Substitutions in Type Infer-
ence. Technical Report. 1–23 pages. http://www.lfcs.inf.ed.ac.uk/reports/98/
ECS-LFCS-98-384/ECS-LFCS-98-384.pdf

[138] Davin Mccall. 2016. Novice Programmer Errors-Analysis and Diagnostics. Ph.D.
Dissertation. The University of Kent. https://kar.kent.ac.uk/id/eprint/61340

[139] Davin McCall and Michael Kölling. 2014. Meaningful Categorisation of Novice
Programmer Errors. In IEEE Frontiers in Education Conference (FIE ’14). 1–8.
https://doi.org/10.1109/FIE.2014.7044420

[140] Davin McCall and Michael Kölling. 2019. A New Look at Novice Programmer
Errors. ACM Transactions on Computing Education 19, 4 (2019), 1–30. https:
//doi.org/10.1145/3335814 arXiv:10.1145/3335814

[141] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-national, Multi-institutional Study of Assessment of Pro-
gramming Skills of First-year CS Students. SIGCSE Bull. 33, 4 (Dec. 2001), 125–180.
https://doi.org/10.1145/572139.572181

[142] L. McIver and D. Conway. 1996. Seven Deadly Sins of Introductory Programming
Language Design. In International Conference on Software Engineering: Education
and Practice (SEEP ’96). IEEE Computer Society, Dunedin, New Zealand, 309–316.
https://doi.org/10.1109/SEEP.1996.534015

[143] Linda Kathryn McIver. 2001. Syntactic and Semantic Issues in Introductory
Programming Education. PhD Thesis. Monash University.

[144] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão. 2019. A Systematic Litera-
ture Review on Teaching and Learning Introductory Programming in Higher
Education. IEEE Transactions on Education 62, 2 (May 2019), 77–90. https:
//doi.org/10.1109/TE.2018.2864133

[145] Rolf Molich and Jakob Nielsen. 1990. Improving a Human-computer Dialogue.
Commun. ACM 33, 3 (March 1990), 338–348. https://doi.org/10.1145/77481.77486

[146] P. G. Moulton and M. E. Muller. 1967. DITRAN - A Compiler Emphasizing
Diagnostics. Commun. ACM 10, 1 (1967), 45–52. https://doi.org/10.1145/363018.
363060

[147] F Mulder. 2016. Awesome Error Messages for Dotty. (Oct 2016). https://www.
scala-lang.org/blog/2016/10/14/dotty-errors.html

[148] Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam Cannon. 2008. Backstop:
A Tool for Debugging Runtime Errors. In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’08). ACM, New York, NY,
USA, 173–177. https://doi.org/10.1145/1352135.1352193

[149] Emerson Murphy-Hill, Titus Barik, and Andrew P. Black. 2013. Interactive
Ambient Visualizations For Soft Advice. Information Visualization 12, 2 (2013),
107–132. https://doi.org/10.1177/1473871612469020

[150] Emerson Murphy-Hill and Andrew P. Black. 2012. Programmer-Friendly Refac-
toring Errors. IEEE Transactions on Software Engineering 38, 6 (2012), 1417–1431.
https://doi.org/10.1109/TSE.2011.110

[151] Scott Nesbitt. 2017. How to Write Better Error Messages. (Aug 2017). https:
//opensource.com/article/17/8/write-effective-error-messages

[152] Eric Niebler. 2007. Proto: A Compiler Construction Toolkit for DSELs. In Pro-
ceedings of the 2007 Symposium on Library-Centric Software Design (LCSD ’07).
ACM, New York, NY, USA, 42–51. https://doi.org/10.1145/1512762.1512767

[153] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-
piler Error Messages: What Can Help Novices?. In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’08). ACM, New
York, NY, USA, 168–172. https://doi.org/10.1145/1352135.1352192

[154] Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das, Amey
Karkare, and Arnab Bhattacharya. 2017. Automatic Grading and Feedback Using
Program Repair for Introductory Programming Courses. In Proceedings of the
22nd ACMConference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). ACM, New York, NY, USA, 92–97. https://doi.org/10.1145/3059009.
3059026

[155] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication,
Validation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER ’16). ACM, New York, NY, USA, 93–101. https://doi.org/10.1145/
2960310.2960316

[156] Terence Parr and Kathleen Fisher. 2011. LL(*): The Foundation of the ANTLR
Parser Generator. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’11). ACM, New York, NY,
USA, 425–436. https://doi.org/10.1145/1993498.1993548

[157] D. N. Perkins and Fay Martin. 1986. Fragile Knowledge and Neglected Strategies
in Novice Programmers. In Papers Presented at the First Workshop on Empirical
Studies of Programmers on Empirical Studies of Programmers. Ablex Publishing
Corp., Norwood, NJ, USA, 213–229. http://dl.acm.org/citation.cfm?id=21842.
28896

[158] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler
Error Messages Help Students?: Results Inconclusive.. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’17).
ACM, New York, NY, USA, 465–470. https://doi.org/10.1145/3017680.3017768

[159] Phitchaya Mangpo Phothilimthana and Sumukh Sridhara. 2017. High-Coverage
Hint Generation for Massive Courses: Do Automated Hints Help CS1 Students?.

In Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’17). ACM, New York, NY, USA, 182–187.
https://doi.org/10.1145/3059009.3059058

[160] James Prather. 2018. Beyond Automated Assessment: Building Metacognitive
Awareness in Novice Programmers in CS1. Ph.D. Dissertation. Nova Southeastern
University.

[161] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa,
Alani Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Provid-
ing Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM, New York, NY, USA, 531–537. https://doi.org/10.1145/3287324.3287374

[162] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice Programmers
in Automated Assessment Tools. In Proceedings of the 2018 ACM Conference on
International Computing Education Research (ICER ’18). ACM, New York, NY, USA,
41–50. https://doi.org/10.1145/3230977.3230981

[163] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research (ICER ’17). ACM,
New York, NY, USA, 74–82. https://doi.org/10.1145/3105726.3106169

[164] David Pritchard. 2015. Frequency Distribution of Error Messages. In Proceedings
of the 6th Workshop on Evaluation and Usability of Programming Languages and
Tools. 1–8. https://doi.org/10.1145/nnnnnnn.nnnnnnn arXiv:1509.07238v1

[165] Yizhou Qian and James Lehman. 2017. Students&#x2019; Misconceptions and
Other Difficulties in Introductory Programming: A Literature Review. ACM
Transactions on Computing Education 18, 1, Article 1 (Oct. 2017), 24 pages. https:
//doi.org/10.1145/3077618

[166] Keith Quille, Roisin Faherty, Susan Bergin, and Brett A. Becker. 2018. Second
Level Computer Science: The Irish K-12 Journey Begins. In Proceedings of the
18th Koli Calling International Conference on Computing Education Research (Koli
Calling ’18). ACM, New York, NY, USA, Article 22, 5 pages. https://doi.org/10.
1145/3279720.3279742

[167] Timothy Rafalski, P. Merlin Uesbeck, Cristina Panks-Meloney, Patrick Daleiden,
William Allee, Amelia Mcnamara, and Andreas Stefik. 2019. A Randomized
Controlled Trial on the Wild Wild West of Scientific Computing with Student
Learners. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (ICER ’19). ACM, New York, NY, USA, 239–247. https://doi.
org/10.1145/3291279.3339421

[168] Vincent Rahli, Joe Wells, John Pirie, and Fairouz Kamareddine. 2015. Skalpel:
A Type Error Slicer for Standard ML. Electronic Notes in Theoretical Computer
Science 312 (2015), 197–213. https://doi.org/10.1016/j.entcs.2015.04.012

[169] Vincent Rahli, Joe Wells, John Pirie, and Fairouz Kamareddine. 2017. Skalpel:
A Constraint-based Type Error Slicer for Standard ML. Journal of Symbolic
Computation 80 (May 2017), 164–208. https://doi.org/10.1016/j.jsc.2016.07.013

[170] Kyle Reestman and Brian Dorn. 2019. Native Language’s Effect on Java Compiler
Errors. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (ICER ’19). ACM, New York, NY, USA, 249–257. https://doi.
org/10.1145/3291279.3339423

[171] Charles Reis and Robert Cartwright. 2004. Taming a Professional IDE for the
Classroom. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’04). ACM, New York, NY, USA, 156–160. https://doi.
org/10.1145/971300.971357

[172] H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision
Problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366. http://www.jstor.org/
stable/1990888

[173] Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. 2020. A Miss is as Good as
a Mile: Off-By-One Errors and Arrays in an Introductory Programming Course.
In Proceedings of the 22nd Australasian Computing Education Conference (ACE
’20). ACM, New York, NY, USA. https://doi.org/10.1145/3373165.3373169

[174] Peter C. Rigby and Suzanne Thompson. 2005. Study of Novice Programmers
Using Eclipse and Gild. In Proceedings of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange (eclipse ’05). ACM, New York, NY, USA, 105–109. https:
//doi.org/10.1145/1117696.1117718

[175] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Education
13, 2 (2003), 137–172. https://doi.org/10.1076/csed.13.2.137.14200

[176] Christine Rogerson and Elsje Scott. 2017. The Fear Factor: How It Affects
Students Learning to Program in a Tertiary Environment. Journal of Information
Technology Education: Research 9 (2017), 147–171. https://doi.org/10.28945/1183

[177] Saul Rosen, Robert A. Spurgeon, and Joel K. Donnelly. 1965. PUFFT - The Purdue
University Fast FORTRAN Translator. Commun. ACM 8, 11 (nov 1965), 661–666.
https://doi.org/10.1145/365660.365671

[178] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1 (ICSE ’15).
IEEE Press, Piscataway, NJ, USA, 598–608. http://dl.acm.org/citation.cfm?id=
2818754.2818828

http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-384/ECS-LFCS-98-384.pdf
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-384/ECS-LFCS-98-384.pdf
https://kar.kent.ac.uk/id/eprint/61340
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1145/3335814
https://doi.org/10.1145/3335814
http://arxiv.org/abs/10.1145/3335814
https://doi.org/10.1145/572139.572181
https://doi.org/10.1109/SEEP.1996.534015
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1145/77481.77486
https://doi.org/10.1145/363018.363060
https://doi.org/10.1145/363018.363060
https://www.scala-lang.org/blog/2016/10/14/dotty-errors.html
https://www.scala-lang.org/blog/2016/10/14/dotty-errors.html
https://doi.org/10.1145/1352135.1352193
https://doi.org/10.1177/1473871612469020
https://doi.org/10.1109/TSE.2011.110
https://opensource.com/article/17/8/write-effective-error-messages
https://opensource.com/article/17/8/write-effective-error-messages
https://doi.org/10.1145/1512762.1512767
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/1993498.1993548
http://dl.acm.org/citation.cfm?id=21842.28896
http://dl.acm.org/citation.cfm?id=21842.28896
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3059009.3059058
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://arxiv.org/abs/1509.07238v1
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3279720.3279742
https://doi.org/10.1145/3279720.3279742
https://doi.org/10.1145/3291279.3339421
https://doi.org/10.1145/3291279.3339421
https://doi.org/10.1016/j.entcs.2015.04.012
https://doi.org/10.1016/j.jsc.2016.07.013
https://doi.org/10.1145/3291279.3339423
https://doi.org/10.1145/3291279.3339423
https://doi.org/10.1145/971300.971357
https://doi.org/10.1145/971300.971357
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
https://doi.org/10.1145/3373165.3373169
https://doi.org/10.1145/1117696.1117718
https://doi.org/10.1145/1117696.1117718
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.28945/1183
https://doi.org/10.1145/365660.365671
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828


[179] Advait Sarkar. 2015. The Impact of Syntax Colouring on Program Comprehen-
sion. Proceedings of the 26th Annual Conference of the Psychology of Program-
ming Interest Group (PPIG ’15) (2015), 49–58. http://www.ppig.org/library/paper/
impact-syntax-colouring-program-comprehension

[180] Thomas Schilling. 2012. Constraint-Free Type Error Slicing. In Proceed-
ings of the 12th International Conference on Trends in Functional Programming
(TFP’11). Springer-Verlag, Berlin, Heidelberg, 1–16. https://doi.org/10.1007/
978-3-642-32037-8_1

[181] Jean Scholtz and Susan Wiedenbeck. 1993. Using Unfamiliar Programming
Languages: The Effects on Expertise. Interacting with Computers 5, 1 (1993),
13–30.

[182] Tom Schorsch. 1995. CAP: An Automated Self-assessment Tool to Check Pascal
Programs for Syntax, Logic and Style Errors. In Proceedings of the Twenty-sixth
SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’95). ACM,
New York, NY, USA, 168–172. https://doi.org/10.1145/199688.199769

[183] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ Build Errors: A Case Study (at Google). In
Proceedings of the 36th International Conference on Software Engineering - ICSE
2014. ACM Press, New York, New York, USA, 724–734. https://doi.org/10.1145/
2568225.2568255

[184] Alejandro Serrano and Jurriaan Hage. 2016. Type Error Diagnosis for Embedded
DSLs by Two-Stage Specialized Type Rules. In Proceedings of the 25th European
Symposium on Programming Languages and Systems - Volume 9632. Springer-
Verlag New York, Inc., New York, NY, USA, 672–698. https://doi.org/10.1007/
978-3-662-49498-1_26

[185] Dale Shaffer, Wendy Doube, and Juhani Tuovinen. 2003. Apply-
ing Cognitive Load Theory to Computer Science Education.. In Pro-
ceedings of the 15th Annual Workshop of the Psychology of Program-
ming Interest Group (PPIG ’03). 333–346. http://ppig.org/library/paper/
applying-cognitive-load-theory-computer-science-education

[186] W. J. Shaw. 1989. Making APL Error Messages Kinder and Gentler. In Conference
Proceedings on APL As a Tool of Thought (APL ’89). ACM, New York, NY, USA,
320–324. https://doi.org/10.1145/75144.75188

[187] Ben Shneiderman. 1982. Designing Computer System Messages. Commun. ACM
25, 9 (1982), 610–611. https://doi.org/10.1145/358628.358639

[188] Ben Shneiderman and Catherine Plaisant. 2004. Designing the User Interface:
Strategies for Effective Human-Computer Interaction (4th ed.). Pearson Addison
Wesley.

[189] M. E. Sime, A. T. Arblaster, and T. R. Green. 1977. Structuring the Programmer’s
Task. Journal of Occupational Psychology 50, 3 (sep 1977), 205–216. https://doi.
org/10.1111/j.2044-8325.1977.tb00376.x

[190] Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer,
James Moscola, and Robert Duvall. 2015. Analyzing Student Work Patterns Using
Programming Exercise Data. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 18–23.
https://doi.org/10.1145/2676723.2677297

[191] Andreas Stefik and Stefan Hanenberg. 2014. The Programming Language
Wars: Questions and Responsibilities for the Programming Language Community.
In Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software (Onward! 2014). ACM,
New York, NY, USA, 283–299. https://doi.org/10.1145/2661136.2661156

[192] Andreas Stefik, Bonita Sharif, Brad. A. Myers, and Stefan Hanenberg. 2018.
Evidence About Programmers for Programming Language Design (Dagstuhl
Seminar 18061). Dagstuhl Reports 8, 2 (2018), 1–25. https://doi.org/10.4230/
DagRep.8.2.1

[193] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Transactions on Computing Education 13,
4, Article 19 (Nov. 2013), 40 pages. https://doi.org/10.1145/2534973

[194] S Suhailan, S Abdul Samad, and M A Burhanuddin. 2014. A Perspective of Au-
tomated Programming Error Feedback Approaches in Problem Solving Exercises.
Journal of Theoretical and Applied Information Technology 70, 1 (2014), 121–129.
http://www.jatit.org/volumes/Vol70No1/16Vol70No1.pdf

[195] John Sweller. 1988. Cognitive Load During Problem Solving: Effects on Learning.
Cognitive science 12, 2 (1988), 257–285. https://www.sciencedirect.com/science/
article/pii/0364021388900237

[196] Emily S. Tabanao, Ma. Mercedes T. Rodrigo, and Matthew C. Jadud. 2011.
Predicting At-risk Novice Java Programmers Through the Analysis of On-
line Protocols. In Proceedings of the 7th International Workshop on Comput-
ing Education Research (ICER ’11). ACM, New York, NY, USA, 85–92. https:
//doi.org/10.1145/2016911.2016930

[197] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment. Commun. ACM 24, 9 (sep 1981),
563–573. https://doi.org/10.1145/358746.358755

[198] Warren Teitelman and Larry Masinter. 1981. The Interlisp Programming Envi-
ronment. Computer 14, 4 (1981), 25–33. https://doi.org/10.1109/C-M.1981.220410

[199] Emillie Thiselton and Christoph Treude. 2019. Enhancing Python Compiler Error
Messages via Stack Overflow. In Proceedings of the 19th International Symposium
on Empirical Software Engineering and Measurement (ESEM ’19). arXiv:1906.11456.

http://arxiv.org/abs/1906.11456
[200] Suzanne Marie Thompson. 2006. An Exploratory Study of Novice Programming

Experiences and Errors. Masters Thesis. University of Victoria.
[201] Warren Toomey. 2011. Quantifying The Incidence of Novice Programmers’

Errors. (2011), 5 pages. https://minnie.tuhs.org/Programs/BlueJErrors/arjen_
draft.pdf

[202] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What
They Mean. Advances in Human-Computer Interaction 2010, Article 3 (Jan. 2010),
26 pages. https://doi.org/10.1155/2010/602570

[203] Kota Uchida and Katsuhiko Gondow. 2016. C-Helper: C Latent-error
Static/Heuristic Checker for Novice Programmers. In Proceedings of the 8th Inter-
national Conference on Computer Supported Education (CSEDU 2016). SciTePress -
Science and Technology Publications, Lda, Portugal, 321–329. https://doi.org/10.
5220/0005797703210329

[204] Miguel Ulloa. 1983. A survey of run-time and logic errors in a classroom
environment. ACM SIGCUE Outlook 17, 3 (1983), 21–25. https://doi.org/10.1145/
1045078.1045081

[205] Leo C. Ureel II and Charles Wallace. 2019. Automated Critique of Early Pro-
gramming Antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 738–744. https://doi.org/10.1145/3287324.3287463

[206] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. 2014. No
Tests Required: Comparing Traditional and Dynamic Predictors of Program-
ming Success. In Proceedings of the 45th ACM Technical Symposium on Com-
puter Science Education (SIGCSE ’14). ACM, New York, NY, USA, 469–474.
https://doi.org/10.1145/2538862.2538930

[207] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. 2012. BlueFix:
Using Crowd-sourced Feedback to Support Programming Students in Error Diag-
nosis and Repair. In Proceedings of the 11th International Conference on Advances
in Web-Based Learning (ICWL’12). Springer-Verlag, Berlin, Heidelberg, 228–239.
https://doi.org/10.1007/978-3-642-33642-3_25

[208] Richard L. Wexelblat. 1976. Maxims for Malfeasant Designers, or How to Design
Languages to Make Programming As Difficult As Possible. In Proceedings of the
2nd International Conference on Software Engineering (ICSE ’76). IEEE Computer
Society Press, Los Alamitos, CA, USA, 331–336. http://dl.acm.org/citation.cfm?
id=800253.807695

[209] Emily Wilska. 2004. Non-Fatal Errors : Creating Usable , Effective Error Mes-
sages. http://www.writersua.com/articles/message/index.html. (2004).

[210] Niklaus Wirth. 1968. PL360, a Programming Language for the 360 Computers.
J. ACM 15, 1 (Jan. 1968), 37–74. https://doi.org/10.1145/321439.321442

[211] Alexander William Wong, Amir Salimi, Shaiful Chowdhury, and Abram Hindle.
2019. Syntax and Stack Overflow: A Methodology for Extracting a Corpus of
Syntax Errors and Fixes. (Jul 2019). arXiv:1907.07803 http://arxiv.org/abs/1907.
07803

[212] John Wrenn and Shriram Krishnamurthi. 2017. Error Messages Are Classifiers:
A Process to Design and Evaluate Error Messages. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2017). ACM, New York, NY, USA, 134–147.
https://doi.org/10.1145/3133850.3133862

[213] Baijun Wu, John Peter Campora III, and Sheng Chen. 2017. Learning User
Friendly Type-error Messages. Proc. ACM Program. Lang. 1, OOPSLA, Article
106 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133930

[214] Stelios Xinogalos, Maya Satratzemi, and Vassilios Dagdilelis. 2006. An Introduc-
tion to Object-Oriented Programming with a Didactic Microworld: objectKarel.
Computers and Education 47, 2 (2006), 148–171. https://doi.org/10.1016/j.compedu.
2004.09.005

[215] Stelios Xinogalos, Maya Satratzemi, and ChristosMalliarakis. 2017. Microworlds,
Games, Animations, Mobile Apps, Puzzle Editors and More: What is Important
for an Introductory Programming Environment? Education and Information
Technologies 22, 1 (Jan. 2017), 145–176. https://doi.org/10.1007/s10639-015-9433-1

[216] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not.
Why?. In Proceedings of the 7th European Software Engineering Conference Held
Jointly with the 7th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE ’99). Springer-Verlag, Berlin, Heidelberg, 253–267.
http://dl.acm.org/citation.cfm?id=318773.318946

[217] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-
Jones. 2015. Diagnosing Type Errors with Class. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’15). ACM, New York, NY, USA, 12–21. https://doi.org/10.1145/2737924.2738009

[218] Lu Zhang. 2012. Empirical Design and Analysis of a Defect Taxonomy for Novice
Programmers. Masters Thesis (by Research). The University of Western Australia.
https://research-repository.uwa.edu.au/files/3232803/Zhang_Lu_2012.pdf

[219] Daniel Zingaro, Michelle Craig, Leo Porter, Brett A. Becker, Yingjun Cao, Phill
Conrad, Diana Cukierman, Arto Hellas, Dastyni Loksa, and Neena Thota. 2018.
Achievement Goals in CS1: Replication and Extension. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (SIGCSE ’18). ACM,
New York, NY, USA, 687–692. https://doi.org/10.1145/3159450.3159452

http://www.ppig.org/library/paper/impact-syntax-colouring-program-comprehension
http://www.ppig.org/library/paper/impact-syntax-colouring-program-comprehension
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1145/199688.199769
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1007/978-3-662-49498-1_26
https://doi.org/10.1007/978-3-662-49498-1_26
http://ppig.org/library/paper/applying-cognitive-load-theory-computer-science-education
http://ppig.org/library/paper/applying-cognitive-load-theory-computer-science-education
https://doi.org/10.1145/75144.75188
https://doi.org/10.1145/358628.358639
https://doi.org/10.1111/j.2044-8325.1977.tb00376.x
https://doi.org/10.1111/j.2044-8325.1977.tb00376.x
https://doi.org/10.1145/2676723.2677297
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.4230/DagRep.8.2.1
https://doi.org/10.4230/DagRep.8.2.1
https://doi.org/10.1145/2534973
http://www.jatit.org/volumes/Vol70No1/16Vol70No1.pdf
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://doi.org/10.1145/2016911.2016930
https://doi.org/10.1145/2016911.2016930
https://doi.org/10.1145/358746.358755
https://doi.org/10.1109/C-M.1981.220410
http://arxiv.org/abs/1906.11456
https://minnie.tuhs.org/Programs/BlueJErrors/arjen_draft.pdf
https://minnie.tuhs.org/Programs/BlueJErrors/arjen_draft.pdf
https://doi.org/10.1155/2010/602570
https://doi.org/10.5220/0005797703210329
https://doi.org/10.5220/0005797703210329
https://doi.org/10.1145/1045078.1045081
https://doi.org/10.1145/1045078.1045081
https://doi.org/10.1145/3287324.3287463
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1007/978-3-642-33642-3_25
http://dl.acm.org/citation.cfm?id=800253.807695
http://dl.acm.org/citation.cfm?id=800253.807695
http://www.writersua.com/articles/message/index.html
https://doi.org/10.1145/321439.321442
http://arxiv.org/abs/1907.07803
http://arxiv.org/abs/1907.07803
http://arxiv.org/abs/1907.07803
https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1145/3133930
https://doi.org/10.1016/j.compedu.2004.09.005
https://doi.org/10.1016/j.compedu.2004.09.005
https://doi.org/10.1007/s10639-015-9433-1
http://dl.acm.org/citation.cfm?id=318773.318946
https://doi.org/10.1145/2737924.2738009
https://research-repository.uwa.edu.au/files/3232803/Zhang_Lu_2012.pdf
https://doi.org/10.1145/3159450.3159452

	Abstract
	1 Introduction & Motivation
	1.1 Motivation
	1.2 Outline

	2 Background & Approach
	2.1 Audience & Objectives
	2.2 The Nomenclature of Errors and Messages

	3 Preliminary Definitions
	3.1 The Architecture of a Compiler
	3.2 Programming Errors
	3.3 Programming Error Messages

	4 Corpora
	4.1 Original Corpus
	4.2 Quasi-systematic Search
	4.3 Classification

	5 Pedagogy & Educational context
	6 Technical
	6.1 Challenges
	6.2 Current Research

	7 Enhancement
	7.1 What is Message Enhancement?
	7.2 A Brief History of Message Enhancement
	7.3 Current Results in Enhancement
	7.4 Into the Future
	7.5 Beyond Enhancement

	8 Guidelines
	8.1 Increase Readability
	8.2 Reduce Cognitive Load
	8.3 Provide Context to the Error
	8.4 Use a Positive Tone
	8.5 Show Examples of Similar Errors
	8.6 Show Solutions or Hints
	8.7 Allow Dynamic Interaction
	8.8 Provide Scaffolding for User
	8.9 Use Logical Argumentation
	8.10 Report Errors at the Right Time

	9 Conclusions
	9.1 Insights from Literature Search
	9.2 Educational Insights
	9.3 Technical Insights
	9.4 Insights from Enhancement
	9.5 Insights from Guidelines
	9.6 Call for Research
	9.7 Moving Ahead
	9.8 Afterword

	Acknowledgments
	References

